Simulation User Guide
(UGO72)

All Achronix Devices

Achronix

Data Acceleration

UG072 Simulation User Guide

Copyrights, Trademarks and Disclaimers

Copyright © 2024 Achronix Semiconductor Corporation. All rights reserved. Achronix, Speedcore, Speedster, and
ACE are trademarks of Achronix Semiconductor Corporation in the U.S. and/or other countries All other trademarks
are the property of their respective owners. All specifications subject to change without notice.

Notice of Disclaimer

The information given in this document is believed to be accurate and reliable. However, Achronix Semiconductor
Corporation does not give any representations or warranties as to the completeness or accuracy of such information
and shall have no liability for the use of the information contained herein. Achronix Semiconductor Corporation
reserves the right to make changes to this document and the information contained herein at any time and without
notice. All Achronix trademarks, registered trademarks, disclaimers and patents are listed at http://
www.achronix.com/legal.

Achronix Semiconductor Corporation

2903 Bunker Hill Lane
Santa Clara, CA 95054
USA

Website: www.achronix.com
E-mail : info@achronix.com

uGorz2

Simulation User Guide

Table of Contents

Chapter1:

Chapter 2:

Chapter 3:

OVEIVIBW ..ottt ssssssstssssssssssssssassssessnsssnsssssssssesssenns 1
Simulation SOftWare TOOI FIOW ...t seaes 1
SIMUIGTION LIDIATIES ottt ss st s s ssnans 2
Including Memory INItialiZation FIlEs ... esceesees 2
Simulation from Within ACE ..ot 4
EXAMIPIE DESIBN ettt sttt sttt et eses 4
Configuring the Simulation Tool ENVIroNmMeNt......c..cccncrcreceecseeseieeeeeeeneenes 4
Configuring the Project SOUICE FIlES ...ttt essaenes 5
Configuring the Simulation OPLiONS ...t sesnasees 6
CoNFIUINE SIMUIBTION ...ttt ss s enss s ssennsssnens 9
Default Simulation Flow 9

Custom Simulation Flow 12
Running the SIMulation FIOW STEPS ...ttt 13
Viewing the Simulation QULPULS ...ttt eaeens 16
Simulation Outside of ACE.........ccuoiirirniiirntreereeneeeceeseeeseessnesssesnens 20
GENEral ProJECT SETUP ..ciieieieeeecceee ettt tss sttt s s s s s nnenans 20
General RTL SimuUIation FIOW ...ttt tesstessesessesssesseaes 21
General Gate-Level SIMUIation FIOW ...t 21

UGO072 Simulation User Guide

General Post-Route Simulation FIOW ... ssesesesseaes 22
Example DesigN DESCIHPLION ...ttt s sssss s s s sssssssesanas 23
Aldec Riviera Simulator EXamMPle ...t eseaes 24
RTL SIMUIGLION IN RIVIEIA ..o ssesse s sssesss e sssessessse s s s sssessssssessnessessssns 24
Step 1 - Create Simulation Directory. 24

Step 2 - Create a .do File 24

Step 3 - Run the Simulation 25

Step 4 - View the Waveform 26

Step 5 - Open the Workspace 26

Step 6 - Initialize the Simulation 27

Step 7 - Add Signals to the Waveform 27

Step 8 - View the Waveform 28
Gate-Level SImMUIAtioN N RIVIEIa ...ttt sea et s 29
Step 1 - Create the Synthesis Project 29

Step 2 - Synthesize the Design 29

Step 3 - Create a Workspace 29

Step 4 - Run the Simulation 30

Step 5 - View the Results 30
Post-Route Simulation iN RIVIEIA ...t sess sttt 31
Step 1 - Create the ACE Project 31

Step 2 - Run Place and Route 31

Step 3 - Create the Workspace 31

Step 4 - Run the Simulation 32

Step 5 - View the Results 32
Cadence Xcelium Simulator EXamMPIE ...ttt sesenenas 32
RTL SimuIation iN XCEIUM c..cuieeieeeeeeeire ettt ettt sttt sttt sesssaesen 32

UGO072 Simulation User Guide

Step 1 - Invoke the Xcelium Tool 32
Step 2 - Add Signals to the Waveform 34
Step 3 - Run the Simulation 36
Step 4 - View the Waveform 37
Step 5 - View Console Messages 38
Gate-Level SImulation N XCEIUM ... ccceeeeieiseisesseesessessesc s sse et se e ssesaessesscnaenas 39
Step 1 - Create the Synthesis Project 40
Step 2 - Synthesize the Design 40
Step 3 - Run Simulation 40
Step 4 - View Simulation Results 40
Post-Route Simulation iN XCEIUM ... sse e ssse s saenae 411
Step 1 - Create the ACE Project 41
Step 2 - Run Place and Route 41
Step 3 - Run Simulation 42
Step 4 - View Simulation Results 42
Siemens QuestaSim Simulator EXamMPIe ...ttt senanens 43
RTL Simulation in QUESTASIM ...t ssse s s sssessesssessesssessesssesssssnessnesnessnesns 43
Step 1 - Create the Project 43
Step 2 - Initialize the Work Library. 43
Step 3 - Create the File List 43
Step 4 - Compile the Design 44
Step 5 - Prepare the Simulation Run 44
Step 6 - Set up the Waveform 45
Step 7 - Run the Simulation 47
Step 8 - View the Waveform 48
Gate-Level Simulation in QUESTASTM ...ttt saenas 49
Step 1 - Create the Synthesis Project 49

UGO072 Simulation User Guide

Step 2 - Synthesize the Design 49
Step 3 - Set up the Simulation Project 49
Step 4 - Initialize the Work Library 50
Step 5 - Create the File List 50
Step 6 - Compile the Design 50
Step 7 - Prepare the Simulation Run 50
Post-Route Simulation in QUESTASIM ...t sssesse s ssse e s sasessesasesns 50
Step 1 - Create the ACE Project 51
Step 2 - Run Place and Route 51
Step 3 - Set up the Simulation Project 51
Step 4 - Initialize the Work Library 51
Step 5 - Create the File List 51
Step 6 - Compile the Design 51
Step 7 - Prepare the Simulation Run 52
Synopsys VCS Simulator EXaMPIE ... iseseesessssssesssessssssssssseans 52
RTL SIMUIGLION INVES ..ottt ese st sss s esse s bbbt sns 52
Step 1 - Run the VCS Simulator 52
Step 2 - Start the Simulation GUI 53
Step 3 - Open the Simulation Database 54
Step 4 - Add Signals to the Waveform 54
Step 5 - View the Simulation Results 55
Gate-Level SIMUIAtioN IN VS ... ettt sses et esse s s ssesssesssessessesesanesns 56
Step 1 - Create the Synthesis Project 56
Step 2 - Synthesize the Design 56
Step 3 - Run the VCS Simulator. 56
Post-Route SIMUIation IN VES ...t eiseisessesstisesse s ssesse s ssessessesacssssassanes 57
Step 1 - Create the ACE Project 57

Vi

UGO072 Simulation User Guide

Step 2 - Run Place and Route 57
Step 3 - Run the VCS Simulator. 57
Chapter 4 : DSM Simulation Package.......cccceevueverercrircrnercnerenencsercsnescsnescsnescsnescsneses 98
Device SIMUIAtioN MOAEL ...ttt seaes 58
DIESCIIPLION ettt se bbb s s s s s s s s s s s st s s s st e s s s s ee st st s st s sesansns 58
Selecting the REQUIFEA DSttt sss st sssss s sssss s sssssssssssssssnssenes 58
DSM Utility Package 58
Device-Specific Simulation Files 59
Instantiate DSM Utility Package 59
VEBISION CONTION ettt sttt e ettt et 60
require_version() Task 60
EXQMIPIE DESIEN ettt s s s a st ea s s s e s s s s et ensssansnes 61
set_verbosity() Task 63
CRiP STATUS DULPUL oottt esse s s a bbb nas 63
BING IMACTOS .ttt sttt et sttt bbbttt st bes 64
Dir€Ct-COoNNECT INTEITACES .euiuieeieieireieieie ettt seb s st e aeen 64
Suggested Flows 65
DSM DC Interfaces 65
Direct Connect to DSM Interfaces 66

Port Binding File to DSM Interfaces 67
Dual-Mode Connections to DSM Interfaces 68
CIOCK FTEOUENCIES et stessass s ssas s sssssssssssas s sssss st sss s es s s sssssssessessssessssssesssssssessssnssnsanssassanes 69
CONTIBUIATION ettt sttt ss s s s s s st ss s s s s s s s st s s ssssessessnsessnsrnans 71
Startup Sequence 72
feu.configure() Task 72
Configuration File Format 73

vii

UGO072 Simulation User Guide

Address Width 74

Parallel Configuration 74

SYSTEMVETIIOZ INTEITACES ..ttt s s s st ss s s ssssssnssssssnans 74

ENVIFONMENT Variables ...t sese st sseae s sacseeas 76

ACE _INSTALL _DIR ettt sttt sttt sts st bbb s e s st 76
ACX_DEVICE_INSTALL _DIR ceeteeeeueeiimeeimecimeessseeessseeisessssesssssessssessssessssssssssessssessssesssssessssesssnsssssesssnesssnesses 76

Chapter 5 : Simulation User Guide Revision Historycccceceeeereerncrccrccrccrcnenenes 78

viii

uGorz2

Simulation User Guide

Chapter 1: Overview

Simulation Software Tool Flow

The Achronix tool suite includes synthesis and place-and-route software that maps RTL designs (VHDL or Verilog)
into Achronix devices. In addition to synthesis and place-and-route functions, the Achronix software tools flow also
supports simulation at several flow steps (RTL, synthesized netlist, and post place-and-route netlist), as shown in

the figure below.

Functional simulation can be done at the following stages:

- Functional RTL level (referred to as RTL simulation)

- Gate-level, post-synthesis netlist (referred to as gate-level simulation)
- Gate-level, post-place-and-route netlist (referred to as post-route simulation)
- Full-chip bitstream simulation with gate-level netlist

The following diagram shows the stages of simulation in the context of the Achronix software tool flow.

HLS/Mathworks,

RTL Code Entry

Tool, Schematic
Entry Tool

-

IP Configuration

User RTL

and constraints

»

RTL Simulation

Synthesis

Post P&R Netlist

»

Place and Route

Timing Analysis

Bitstream Generation
and Download

s Netlist Simulation

Simulation

Full-chip
Bitstream

Silicon

@ Achronix ACE

In-system Debugging

e Synplify-Pro from Synopsys
Supplied by Achronix

Figure 1 - Simulation Flow

Simulation

|

|

|

|

| Simulation available at
} multiple flow steps
|

I Supported simulators
|

|

|

@ include VCS, QuestaSim,
Incisive, and Riviera

5047158-01.2024.08.13

1.7

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Simulation Libraries

This guide covers simulation for all Achronix devices. The text in this user guide contains references to <DEVICE>.

The user should replace this with the target device name for your project, for example AC7t1500. The base ACE
install package does not contain any simulation libraries by default. The simulation libraries are device-specific and

are installed from within the device overlay installation packages.

Table 1 - Achronix Simulation Libraries

<ace_install_dir> Directory path to where ACE is installed.

Root directory for simulation and other libraries
provided by Achronix. This is the top-level library
include directory (+incdir+) for Achronix device
libraries.

/libraries

Contains the technology-specific top-level
/device_models Achronix device library include files for simulation
and synthesis.

The top-level device-specific library include file required for simulation is
<ace_install_dir>/libraries/device_models/<DEVICE>_simmodels.sv. This top-
level include file includes all of the library files for the given target device.

Including Memory Initialization Files

If a design uses memories and includes memory initialization files, the designer needs to consider carefully where to
place the files when running simulation or synthesis. Achronix recommends using relative paths when referencing
memory initialization files. Relative paths allows for changes in the location of the project without having to change
the memory file reference in the RTL design files. However, when using relative paths, the designer must ensure
that the path to a memory initialization file is relative to:

- The simulation directory when simulating.
- The ACE directory when generating a bitstream.

If these two relative paths are different, for example at different levels in the project hierarchy, the designer can use
compiler directives to choose the correct path for the particular situation. An example is shown below.

L7 www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Memory Initialization Path Example

"ifdef SIMULATION

.mem_init_file (../../path_from_sim_dir/mem_filename) // use this path when
simulating
‘else

.mem_init_file (../../path_from_ace_dir/mem_filename) // use this path for
implementation
‘endif

The above use of the SIMULATION compiler directive can also be a good way to design in special debug features
that are only for simulation and not intended to be synthesized. Compiler directives can also be a good way to speed
up certain sections of logic for simulation if desired.

L7 www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Chapter 2 : Simulation from within ACE

As of ACE 10.0, Achronix provides built-in support for configuring the simulation environment via ACE project
options and for running simulations via ACE flow steps. Using the built-in ACE simulation flow gives the end user a
streamlined user experience, and a way to manage all aspects of the project (IP configuration, synthesis, simulation,
place and route) from a single ACE project file.

Example Design

Although it is a simple example the quickstart tutorial design can be used to quickly demonstrate the ACE simulation
flow. See ACE Quickstart Tutorial or The Quickstart Design in the ACE Users Guide (UG070)* for details. The ACE
simulation flow is capable of supporting nearly any simulation setup for a wide variety of designs and testbench
structures across the supported list of simulator tools.

Configuring the Simulation Tool Environment

ACE simulation flow steps currently support installations of Siemens QuestaSim, Aldec Riviera, Cadence Xcelium, or
Synopsys VCS to run the simulations. Therefore, the simulator tool must be installed in a directory accessible from
the host on which ACE is running. Each simulator requires an environment variable to be set appropriately, as shown
in the following table.

Table 2 - Environment Variables Needed for Simulation

Simulation Environment Linux Path Windows Path

Tool Variable

Set to the Linux executable QuestaSim Set to the directory path containing
launcher script path. A default launcher script = the vlog.exe, vcom.exe, and

ACX_QUESTASIM_TOOL_PAT example can be foundin <ace_install>/ vsim.exefiles

Siemens QuestaSim H

examples/simulation_scripts/ (i.e.,D:\questa_base64_
questasim_launcher. 2023.3\win64).
Set to the Linux executable Riviera launcher Set to the file path of the Riviera
script path. A default launcher script example runvsimsa.batfile

Aldec Riviera ACX_RIVIERA_TOOL_PATH can befoundin <ace_install>/ (i.e.,D:\Aldec\Riviera-
examples/simulation_scripts/ PR0O-2020.10-
riviera_launcher. x64\runvsimsa.bat.

Set to the Linux executable VCS launcher
script path. A default launcher script example
Synopsys VCS ACX_VCS_TOOL_PATH can be found in <ace_install>/ (Not Supported)
examples/simulation_scripts/
vcs_launcher.

1 https://www.achronix.com/documentation/ace-user-guide-ug070

L7 www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UG072 Simulation User Guide

Simulation Environment
Tool Variable

Linux Path Windows Path

Set to the Linux executable Xcelium launcher
script path. A default launcher script example
Cadence Xcelium ACX_XCELIUM_TOOL_PATH can befoundin <ace_install>/ (Not Supported)
examples/simulation_scripts/
xcelium_launcher

Configuring the Project Source Files

To run the simulation from ACE, end user design source RTL files and simulation testbench RTL files must be added
to the ACE project.

() Project Source File Ordering

The order in which source RTL files are added to an ACE project is the order in which the files will be
compiled by the simulator. Therefore, if the chosen simulator requires that modules are defined before they
are instantiated, add the lowest-level module definition files first, then the top-level module file last. Once
files are added to the ACE project, they may be re-order via drag-and-drop in the Projects View in the ACE
GUI, or by calling the move_project_source_file TCL command.

First, create or restore an ACE project file in the current ACE session. See the ACE Quickstart Tutorial for
instructions on how to create the ACE project for the Quickstart example.

In the Projects view, click the project to select it and activate its implementation. Follow these steps to add the
design source files for synthesis, simulation, place and route:

1. Click the (.;né}) Add Source Files toolbar button and select Add RTL Files.

2. Inthe Add RTL Files dialog, browse to the directory where the end-user design RTL is located and select all of
the files.

3. Click the Open button to add the RTL files to the project.

() Note

When adding RTL files to an ACE project, adding the top-level ACE library simulation include file for the
target device (<ace_install>/libraries/device_models/<device>_simmodels.sv (pag
e 4)

) is not needed. ACE will automatically locate and add this file to the simulation.

4. Click the (.;.é}) Add Source Files toolbar button and select Add Simulation Testbench Files.

5. Inthe "Add Simulation Testbench Files" dialog, browse to the directory where the simulation testbench RTL
files are located and select all of the files.

L7 www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

() Notes

o %, f files may also be added as simulation testbench source files in ACE. When using the default
simulation flow, ACE will automatically add these files to the simulator compile commands with
the "-f" option. ACE will pre-parse the file to determine of the file should be included in VHDL
compile, Verilog compile, or both.

> Additional files maybe added, such as memory initialization files, test vector files, or any other
data files that the user design RTL or testbench RTL need to load during the simulation compile or
run. When using the default simulation flow, ACE will automatically copy these files into the
simulation run directory (<ace_project_output_dir>/<impl>/sim/<sim_step>/
<tool>/) so they can be loaded using the filename or relative path of ". /<filename>".

6. Click the Open button to add the simulation testbench files to the project.

7. Click the (Eﬂ) Save Project toolbar button to save the changes back to the *x. acxprj ACE project file.

The source files are now configured and saved to the ACE project. All of the source files are now visible in the
Projects View under the Source tree for the project.

Configuring the Simulation Options

The simulation environment and simulator command-line arguments are configured using the Simulation ACE

project options. These can be configured in the Options View in the ACE GUI, or via the set_project_option TCL
command.

First, configure the top-level project settings. In the Options View, follow these steps to configure the project options:

1. Expand the Project Settings section and select the Target Device, Speed Grade, and Core Voltage for the
project.

L7 www.achronix.com

http://www.achronix.com

uGorz2

Simulation User Guide

=l Options x

Project: quickstart_AC7t1500

Implementation: impl_1

~ Project Options

Target Device AC7t1500
Package F53
Speed Grade c2

Core Voltage 0.85

Junction Temperature 0

Flow Mode Evaluation
Auto-Select Top Module

Incremental Compile

D Enable Incremental Compile

[] Export All Partitions
[l Enable Final Timing Checks

bt

HDL Include Path | D:/ACE/doc/examples/quickstart/ACTH1 500/src‘

HDL Defines | DEFINE_A=1 DEFINE7B=O|

Use Default Project Output Path

Use Default I/0 Ring Design Generation Path

Figure 2 - ACE Options View

2. Inthe Project Settings section, scroll down and enter the a semicolon-separated list of directory paths for the
HDL Include Path, for example: <test_dir>/src/rtl;<test_dir>/src/tb

(@ Notes
> The HDL Include Path applies to both synthesis and simulation.

o ACE will automatically add the <ace_install>/librariies directory to the HDL Include Path;

they do need to be entered in the HDL Include Path project option.

3. If the end-user design or simulation testbench requires any HDL defines, enter them as a space-separated list
in the HDL Defines project option, for example: SIMULATION_DEFINE_A=1 SIMULATION_DEFINE_B=0

(@ Note

The HDL Defines applies to both synthesis and simulation.

1.7

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

=l Options x

Project: quickstart_ACTt1500

Implementation: impl_1
~ Project Options
Target Device ACTt1500 v

Package F53 ~
Speed Grade c2 ~
Core Voltage 0.85 ~
Junction Temperature |0 v

Flow Mode Evaluation ~

Auto-Select Top Madule

Incremental Compile

[] Enable Incremental Compile

[] Export All Partitions
["] Enable Final Timing Checks

HDL Include Path | D:,’ACE/doc,"examples/quicksta@SOOfsrc|

HDL Defines | DEFINE A=1DEFINEB=0 wgi=— |

Use Default Project Output Path

Use Default /0O Ring Design Generation Path

Figure 3 - Setting HDL Include Path and HDL Defines

4. Scroll down and expand the Simulation section of options and enter the testbench top module name in the
Testbench Top Module field.

L7 www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

(= Options x| =D
Project: quickstart ACTt1500 ~
Implementation: impl_1
+ Project Options
~ Simulation

Simulation Flow Default v
Simulation Tool Aldec Riviera he
Testbench Top Module | th_quickstart =g
[_] Enable Device Simulation Model
Compile Simulation
Riviera Compile Options
Simulator Command Arguments (alog) ‘ -dbg |
Simulator Command Arguments (acom) ‘ -dbg |
Run Simulation
Riviera Run Options
Simulator Command Arguments (asim) | +access +r
+ Synthesis
+ Place and Route
+ Advanced Place and Route
+ Timing Analysis v
< >

Figure 4 - Setting the Testbench Top Module

Configuring Simulation

There are two types of simulation flows which can be run via the ACE flow steps:

- Default simulation flow - this flow is the simplest flow for end users. It uses the simulation scripts built into ACE
to configure and run the simulation in the background.

- Custom simulation flow - this flow allows the end user to create and use their own custom simulator scripts
instead of using the built-in scripts, allowing a custom simulation environment to be connected in to the ACE

flow steps.

Default Simulation Flow

To use the Default simulation flow, first set the Simulation Flow project option to Default. Then select the simulator
desired.

L7 www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

=/ Options %

Project: quickstart_AC7t1500

Implementation: impl_1
» Project Options

~ Simulation

Simulation Flow Default ¢ e
Simulation Tool Aldec Riviera @ B2

Testbench Top Module | tb_quickstart

] Enable Device Simulation Model
Compile Simulation

Riviera Compile Options

Simulator Command Arguments (alog) ‘ -dbg ‘

Simulator Command Arguments (acom) ‘ -dbg ‘

Run Simulation

Riviera Run Options

Simulator Command Arguments (asim) | +access +r

Figure 5 - Setting the Simulator Within ACE

ACE currently supports the following simulators for use with the default simulation flow:
- Siemens QuestaSim
- Aldec Riviera
- Synopsys VCS
- Cadence Xcelium

Each simulator tool has its own simulator-specific set of simulation compile options and simulation run options,
which allow command-line arguments to passed to the underlying simulator.

All simulators (except Xcelium) support separate compile and run steps. By default, the ACE project options to
Compile Simulation and Run Simulation are enabled. These settings ensure that the simulation flow step first
compiles and changes to the source HDL and testbench, and then runs the simulation. Optionally, the Run
Simulation option can be disabled to perform a compile-only, or disable the Compile Simulation to perform a re-run
of the previous compile.

The Cadence Xcelium simulation flow step supports running the xrun command for both compile and simulation run.

1.7 10

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

£ Options x|
Project: quickstart AC7t1500
Implementation: impl_1
» Project Options
~ Simulation

Simulation Flow Default v

Simulation Tool Aldec Riviera ~

Testbench Top Module ‘ th_quickstart

D Enable Device Simulation Model

Compile Simulation =

Riviera Compile Options

Simulator Command Arguments (alog) | -dbg |

Simulator Command Arguments (acom) | -dbg |

Run Simulation L ——— |

Riviera Run Options

Simulator Command Arguments (asim) ‘ +access +r1

+ Synthesis

+ Place and Route

» Advanced Place and Route
+ Timing Analysis

< >

Figure 6 - Setting Simulation and Compile Options

If targeting a Speedster device which has a device simulation model, a simulation option to Enable Device
Simulation Model is activated. If this option is enabled, the simulation flow scripts will automatically include and
compile the correct device simulation model files for the target device. ACE will also automatically set the
$ACX_USE_DSM environment variable to 1 before calling the simulator tools.

For all devices, ACE automatically sets the following environment variables prior to calling the simulator, so there is
no need to set them manually:

- SACE_INSTALL_DIR - the path to the ACE installation
+ SACX_DEVICE_INSTALL_DIR -the path to the device installation area inside the ACE install
- SDEVICE - the name of the target device for the project

ACE also automatically adds a define to the simulation to specify the selected simulator:

Aldec Riviera +define+RIVIERA
Siemens QuestaSim +define+QUESTASIM
1.7 11

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Synopsys VCS +define+VCS

Cadence Xcelium +define+XCELIUM

The project is now ready to run through the flow.

Custom Simulation Flow

Connecting a custom simulation flow into the ACE flow steps requires some ACE Simulation project options to be
configured.

1. Set the Simulation Flow option to Custom:
=/ Options X
Project: quickstart_AC7t1500
Implementation: impl_1
» Project Options

* Simulation

Simulation Flow Custom o — | v

Custom Simulation Command ‘ my_custom_sim_command ‘

Testbench Top Module ‘ tb_quickstard ‘

[] Enable Device Simulation Model

Figure 7 - Selecting the Simulation Flow

2. Next, configure the Custom Simulation Command. The custom simulation command is the TCL command that
the ACE flow step will call to compile and run the simulation. Since there are multiple ACE simulation flow steps
(as described below), ACE must pass in the simulation flow step ID to the custom simulation command.
Therefore, the custom simulation command must be able to take a "-sim_step <step>"command-line
option, where the values of <step> are: rtl, gate, routed,and final.

There are two options for configuring the Custom Simulation Command:
- Use a TCL exec command to call an external executable script or program.

- Usean ACE_INIT_SCRIPT to create a custom TCL proc to call the simulatitor. See Running ACE in the ACE
Users Guide (UG070)2 for more details.

2 https://www.achronix.com/documentation/ace-user-guide-ug070

1.7 12

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

UGO072 Simulation User Guide

E| Options =

Project: quickstart_AC7t1500
Implementation: impl_1

» Project Options

* Simulation

Simulation Flow Custom

Custom Simulation Command | my_custom_sim_command -—

Testbench Top Module | th_quickstart

[] Enable Device Simulation Model

Figure 8 - Setting the Customer Simulation Command

If targeting a Speedster device which has a device simulation model, a simulation option to Enable Device
Simulation Model is activated. If this option is enabled, the generated <ace_project_output_dir>/<impl>/

sim/<simstep>/custom/verilog_filelist.f will automatically include the correct device simulation
model top-level include files for the target device. However, the custom simulation flow needs to account for the

<ace_install>/system/data/<device>/sim/<device>_dsm_incdirs. f file. ACE also automatically
sets the SACX_USE_DSM environment variable to 1 before calling the simulator.

Running the Simulation Flow Steps

ACE provides the following optional simulation flow steps:

Table 3 - Optional Simulation Flow Steps

RTL Simulation

- Run RTL Simulation run_simulation_rtl
Synthesis
- Run Gate-level Netlist Simulation run_simulation_gate

Place and Route

- Generate Post-Route Simulation Netlist write_netlist_routed

1.7 13

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

- Run Post-Route Netlist Simulation run_simulation_routed

Design Completion

- Generate Final Simulation Netlist write_netlist_final
- Run Final Netlist Simulation run_simulation_final
Table Notes

- All flow step IDs can be executed at the ACE GUI Tcl console (see Tcl Console View in the ACE Users Guide

(UG0703) or as part of the user Tcl script that can be invoked when running ACE in batch mode. The
following Tcl command allows executing the various flow steps IDs listed:

run [-step <string>] [-stop_at_step <string>] [-
resume] [-ic <string>]
- Because advanced users are allowed to create their own flow steps (create_flow_step), this list may be a

subset of the flow steps available to users. To see a complete list of current flow step IDs, use the Tcl
command get_flow_steps.

To run a given simulation flow step:
1. Enable the flow step by checking the checkbox next to the given flow step in the Flow View in the ACE GUI. Or,
call the enable_flow_step <step_id> TCL command.

2. Double-click the flow step in the Flow View in the ACE GUI to run it. Or, call the run -step <step_id> TCL
command.

3 https://www.achronix.com/documentation/ace-user-guide-ug070

1.7 14

www.achronix.com

https://www.achronix.com/documentation/ace-user-guide-ug070
http://www.achronix.com
https://www.achronix.com/documentation/ace-user-guide-ug070

uGorz2

Simulation User Guide

B0, Flow X | B e ¢ =8
v m &9 IP Configuration
O & Generate All IP Design Files
v [@ &% RTL Simulation
M % Run RTL Simulation
v [&¥ Synthesis
M % Run Synthesis
0 & Run Gate-level Netlist Simulation
® & Place and Route
@ + Run Prepare
® % Run Place
O & Run Post-Placement Timing Analysis
® & Run Route
& & Run Post-Route Timing Analysis
[& Generate Post-Route Simulation Netlist
[0 & Run Post-Route Netlist Simulation
® & Design Completion
® & Post-Process Design
® & Run Final DRC Checks
M & Run Sign-off Timing Analysis
& Generate Final Reports
[0 & Generate Final Simulation Netlist
00 & Run Final Netlist Simulation
® &) FPGA Programming
& Generate Bitstream
O & FPGA Download

<

<

<

Figure 9 - Selecting Flow Steps to be Run

Prior to running the simulation, ACE will change working directories ("cd") into the simulation output directory:
<ace_project_output_dir>/<impl>/sim/<sim_step>/<tool>/. ACE will then change back to the
original ACE working directory after the simulation run completes. Make sure any relative file paths in the simulation
testbench and user design RTL are relative to this directory.

() Notes

- x. f files may also be added as simulation testbench source files in ACE. When using the default

simulation flow, ACE will automatically add these files to the simulator compile commands with the
"—f" option. ACE will pre-parse the file to determine of the file should be included in VHDL compile,
Verilog compile, or both.

- Additional files maybe added, such as memory initialization files, test vector files, or any other data

files that the user design RTL or testbench RTL need to load during the simulation compile or run.
When using the default simulation flow, ACE will automatically copy these files into the simulation run
directory (<ace_project_output_dir>/<impl>/sim/<sim_step>/<tool>/) sothey can be
loaded using the filename or relative path of ". /<filename>".

1.7

www.achronix.com

15

http://www.achronix.com

uGorz2

Simulation User Guide

Viewing the Simulation Outputs

Once a simulation flow step has been run, the simulator log file will automatically be displayed i

Area, and the ACE TCL Console will display any messages about the simulation run.

n the ACE GUI Editor

@ACE - Achronix CAD Environment - Version 10.0 - quickstart AC7t1500->impl_1 (AC7t1500) - O X
File Edit Actions Window Help
A ® il M SR 0 Q
& *Projects X = O /& Options % = L4 quickstart AC7t1500-riviera-rtllog X = e
o & | B~ & & %8 o A < ~
« & quickstart ACTt1500 n | Project quickstart ACTH1S00 72 # SLP: Elaboration phase ...
v & Source Implementation: impl_1 73 # SLP: Elaboration phase ... done : @.2 [s]
5 p 74 # SLP: Generation phase ...
1P iroiectoptions 75 # SLP: Generation phase ... done : ©.7 [s]
v &RIL ~ Simulation 76 # SLP: Finished : 6.9 [s]
[counter.y Simulation Fl Default 77 # SLP: @ primitives and 18 (18@.00%) other pri
B quickstarty imulation Flow etau 78 # SLP: 40 (100.00%) signals in SLP and @ inte
N 79 # ELAB2: Elab: ti final lete - ti
© Synthesis Simulation Tool Aldec Riviera 86 # KERNEL: sipogia;ggg :gf\e Eaiim:?ms : ?5] B
bP!ace a'fd Route Tastbench Top Module | th quickstart 81 # KERNEL: SLP simulation initialization done
v = Simulation P -4 82 # KERNEL: Kernel process initialization done.
v & Testbench "] Enable Device Simulation Model 83 # Allocation: Simulator allocated 4685 kB (el
& tb_quickstart.v 84 # KERNEL: ASDB file was created in location C
v & Output - [V] Compile Simulation 85 run -all
K P - " R 86 # KERNEL: At time 8, outco
& Reports Riviera Compile Options 87 # KERNEL: At time 1006633860000, outco
v #impl1 Simulator Command Arguments (alog) | -dbg 3% # KERNEL: At time 2013266820000, outco
& syn il q IC 89 # KERNEL: At time 3019899780000, outco
= prr Simulator Command Arguments (acom) | -dbg 90 # KERNEL: At time 4026532740000, outco
v e)) 91 # RUNTIME: Info: RUNTIME_@@68 tb_quickstart.v
5'm| & Run Simulation 92 # KERNEL: Time: 4026532848 ns, Iteration: @,
v e . ima:
= Riviera Run Options 93 # KERNEL.‘stoppgd at t1mg.‘4626532846 ns
& custom 94 # VSIM: Simulation has finished. There are no
5 riviera Simulator Command Arguments (asim) | +access +r 95 endsim
r—— . s =g 96 # VSIM: Simulation has finished.
%HOWVX BM[;!tlpro(fess BB E g » Synthesis 57 exit
v A
[m] & IP Configuration S Plbom enet T . o8 <
A-GenerateldLI Dosign Files
|m] & RTL Simulation g 2% g >
[Run RTL Simulation HAle[0a[&BE § =0
v @& Aldec Riviera simulation completed successfully A
[+] & Run Synthesis Flow step "run_simulation_rtl" completed in 29 seconds. Peak memory usage is 24@ MB. Cputime 29 seconds.
[[] & Run Gate-level Netlist Simulation
v [W] @ Place and Route . . .
Overall flow completed in 29 seconds. Peak memory usage is 240 MB. Cputime 29 seconds.
[m] & Run Prepare
[m] & Run Place v
[] & Run Post-Placement Timing Analysis < >
[m] & Run Route v lemd> i
41M of 512M 11

Figure 10 - Log File and Message Display

If there are any errors in the compile of the simulation, or if the simulator tool returns a non-zero return code, the
ACE flow step will error out and stop the flow and ACE will open the simulation log file to the line that shows the error

message.

1.7

www.achronix.com

16

http://www.achronix.com

UGO072 Simulation User Guide

@ ACE - Achronix CAD Environment - Version 10.0 - quickstart AC7t1500->impl_1 (AC7t1500) - O X
File Edit Actions Window Help
2| EHee 0OPIEH®E@ELE R Q
@*Projects x| S WH[B~ [B[® BRI %1 = T |Hoptions x| = O | b quickstart A.. | 2 quickstartv |0 quickstart A x| T 8
. . 4% % ALUG: Complle Success ¢ krrors 1 Warnings
& quickstart AC7t1500 | Project: quickstart_ AC7t1500 “ | 49 # ALoG: done "
v & Source Implementation: impl_1 50 alog +incdir+"D:/ACE_1@.8/Achronix/Achroni
&1pP _ s 51 # ALOG: Pass 1. Scanning modules hierarchy.
v ®RIL > Project Options 52 # ALOG: Info: VCP2113 Module \$root found i

53 # ALOG: Info: VCP2113 Module quickstart fou

[counterv ~ Simulation : N P
—p— 54 # ALOG: Pass 2. Processing instantiations.
£ quickstartv Simulation Flow Default 55 # ALOG: Warning: VCP2597 D:/source/software
& Synthesis 56 # ALOG: Pass 3. Processing behavioral state
& Place and Route Simulation Tool Aldec Riviera 57 # ALOG: ELB/DAG code generating.
v & Simulation 58 # ALOG: Info: VCP2113 Module \$root found i
Testbench Top Module | tb_quickstart 59 # ALOG: Unit top modules: tb_quickstart.

« & Testbench
estbenc 50 # ALOG: $root top modules: ACX_ALUSF ACX_AL

[tb_quickstart.v DEnabIe Device Simulation Model 61 # ALOG: Compile success @ Errors 1 Warnings
v & Output] Compile Simulation 62 # ALOG: done .
& Reports 63 asim +access +r tb_quickstart
v @impl1 Riviera Compile Options 64 # ELBREAD: Elaboration process.
& syn Simulator Command Arguments (alog) | -dbg 65 # ELBREAD: E:!'aboratlon_t:!'m? 0.5 [s].
66 # KERNEL: Main thread initiated.
& pnr Simulator Command Arguments (acom) | -dbg 67 # KERNEL: Kernel process initialization phz
v =sim 68 # aboration final pass...
= gate [V] Run Simulation 69 # LeAB.: Create 1nShegces ...
v el - . 70 ELBREAD: Error: ELBREYD_0097 quickstart..
- custom Riviera Run Options 71{# KERNEL: Error: E80@5 :}Kernel process inj
. Simulator Command Arguments (asim)| +access +r 72 % VSIM: Error: Simulatifn initialization fz
& questasim 73 RIPTER: Error: sers/scottsenst/quic
v & riviera » Synthesis v 74 4
= compile < > < >
& work = Td Console *| | 6B |[@lal & & o
atasetasclb s e e TSSO T ST ST S 7 SeT o7 See S Seee S RS TR S e S ST See ey S T —
B library.cfg v | Simulator output 1 scottsenst/quickstart_AC7t1580/impl_1/sim/rtl/riviera/quickstart_s
. Flow ><|§ Multiprocess b0 m § = 8| Aldec Rivierq simulation finished with errors dsee simulator log file for details: C:/Users/scottsenst,
~ [m]® IP Configuration A | Flow step "run_simulation_r Iled in 13 seconds. Peak memory usage is 24@ MB. Cputime 13 seconds.
Overall flow failed in 13 seconds. Peak memory usage is 24@ MB. Cputime 13 seconds.
v
ne < >
4 Run Synthesis v |[cmd> =]
| Writable [Insert [1:1:0 N asmofsem @

Figure 11 - Simulator Error Message Display

However, depending on the design of the simulation testbench and the simulator, the simulation run could return a
zero return code (indicating the simulation passed) while the testbench printed display statements to the simulation
log file to indicate there was actually a failure. The ACE built-in simulation script automatically parses the simulation
log file to look for error messages using the following regular expressions:

Table 4 - Log File Search RegEx

Log Message Regex

{ALint-} or {AWarning-} Remaining message is ignored until the next blank line
{(ERROR[\s:].*)} ACE flow step reports an error
{(Error-#)} ACE flow step reports an error, unless the line also matches
- {vsim-8604} or {\Ssetup}
{Test finished with .* errors} ACE flow step reports an error
1.7 17

www.achronix.com

http://www.achronix.com

UGO072 Simulation User Guide

ACE flow step reports an error, unless the line also matches
{Errors: 0}

Case insensitive {Aerror}

{Fatal error}

{vsim-PLI-3406}
ACE flow step reports an error
Case insensitive {simulation failed}

Case insensitive {test failed}

If any messages in the simulation log file match these expressions, ACE will treat it as a simulation failure, even
though the simulator returned a zero (passing) return code. Please use the regular expressions above as a guideline
for developing testbench error messages to ensure ACE will catch them.

Once simulation has run, any simulation output will be captured in <ace_project_output_dir>/<impl>/
sim/<sim_step>/<tool>/, where:

- <sim_step>isoneof rtl, gate, routed, or final
- <tool>isoneof riviera, vcs, questasim, xcelium.

Simulation output files can be browsed and opened from within the ACE GUI Projects View.

1.7 18

www.achronix.com

http://www.achronix.com

uGorz2

Simulation User Guide

@*Projectsx‘ e B @R S8 =0

v g quickstart AC7t1500
¥ = Source
& IP
v (= RTL

[

counter.v

m

= quickstart.v
> = Synthesis
» = Place and Route
v = Simulation
v = Testbench
E tb_quickstart.v
v = Output
> = Reports
~ & impl_1
> & syn
> & pnr
* = sim
» = gate
v &l
» = custom
» [questasim
¥ [riviera
> = compile
> = work
B dataset.asdb
B library.cfg
=5 quickstart AC7t1500-riviera-rtl.err
= quickstart AC7t1500-riviera-rtl.log
riviera.tcl

@l

Figure 12 - ACE Projects View

www.achronix.com

19

http://www.achronix.com

UG072 Simulation User Guide

Chapter 3 : Simulation Outside of ACE

All simulation flow steps in ACE are optional. The end user has the freedom to configure their own custom simulation
environment and run simulation of their design outside of ACE. The following sections give examples of how to
configure custom simulation environments for each simulator outside of ACE.

General Project Setup

The following project directory structure is used in this example:

Table 5 - User Design Project Directory Structure

m

<project_dir> Root directory for the user design project
/src Source file directory
/rtl Contains source RTL for the user design

/mem_init_files Contains memory initialization files for BRAMs or LRAMs

/tb Contains the simulation testbench for the user design
/syn Contains the synthesis project area and output
/ace Contains the ACE project area and output

For Siemens Questasim
/questasim-rtl Contains the RTL simulation project area and output
/questasim-gate Contains the gate-level simulation project area and output
/questasim-final Contains the post-route (or final) simulation project area and output

For Aldec Riviera

/riviera-rtl Contains the RTL simulation project area and output
/riviera-gate Contains the gate-level simulation project area and output
/riviera-final Contains the post-route (or final) simulation project area and output

1.7 20

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

For Cadence Xcelium
/xcelium-rtl Contains the RTL simulation project area and output
/xcelium-gate Contains the gate-level simulation project area and output

/xcelium-final Contains the post-route (or final) simulation project area and output

For Synopsys VCS
/ves-rtl Contains the RTL simulation project area and output
/vcs-gate Contains the gate-level simulation project area and output
/ves-final Contains the post-route (or final) simulation project area and output

General RTL Simulation Flow

To perform RTL simulation:

1. Firstcreate a <sim_tool>-rt1l directory under <project_dir>/src/.

2. Then change directories (cd) to the new <project_dir>/src/<sim_tool>-rt1 directory (make it the
current working directory) to launch subsequent simulator commands from.

3. Create the simulation project files and add the source files and library paths. This step can be done by creating
a filelist. f with all the library includes, design files, and compiler directives. For an example of this type of

file list, see the filelist. f examples in the section, Siemens QuestaSim Simulator Example (page 43) Add the
following to the simulator project:

a. The top-level Achronix technology-specific simulation library include directory path (incdir):
<ace_install_dir>/1libraries.

b. The top-level Achronix technology-specific simulation library include file, found in
<ace_install_dir>/libraries/device_models/<device>_simmodels.sv.

c. The behavioral RTL (Verilog or VHDL) source files for the user design.
d. The top-level simulation testbench (Verilog or VHDL) files.
4. Run the simulation and observe the output waveform.

General Gate-Level Simulation Flow

To perform gate-level simulation:

1. Create a synthesis project in the <project_dir>/src/syn/ directory for Synplify Pro to compile and
synthesize the source behavioral RTL files to map to Achronix technology. The output of synthesis (Synplify Pro)
is a mapped gate-level Verilog netlist in the format that ACE can accept as input for the back-end place-and-

route flow. Synplify Pro outputs the synthesized gate-level netlist with the x . vm extension.

1.7 21

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

2. Createa <sim_tool>-gate directory under <project_dir>/src/.

3. Change directories (cd) to the new <project_dir>/src/<sim_tool>-gate directory (make it the current

working directory) to launch subsequent simulator commands from.

Create the simulation project files and add the source files and library paths. This step can be performed by
creating a filelist. f with all the library includes, design files, and compiler directives. For an example of this

type of file list, see the filelist. f examples in the section, Siemens QuestaSim Simulator Example (page 43).
Add the following to the simulator project:

a. The top-level Achronix technology-specific simulation library include directory path (incdir):
<ace_install_dir>/1libraries.

b. The top-level Achronix technology-specific simulation library include file, found in
<ace_install_dir>/1libraries/device_models/<device>_simmodels.sv.

c. The synthesized gate-level Verilog netlist file (x . vm) for the user design.

d. The top-level simulation testbench (Verilog or VHDL) files.

Run the simulation and observe the output waveform.

General Post-Route Simulation Flow

To perform post-route simulation:

1

Create a projectinthe <project_dir>/src/ace/ directory for ACE to place and route the source
synthesized gate-level Verilog netlist file (x . vm file output by Synplify Pro) for the user design. The user design
must be run through the place-and-route flow in ACE, and the Generate Final Simulation Netlist flow step must
be run to output the post-route gate-level netlist from ACE.

The post-route gate-level netlist represents the user design logic after all transformations and optimizations
made by the flow prior to bitstream generation. ACE outputs the post-route gate-level netlist into the following
location: <project_dir>/src/ace/<active_impl_dir>/pnr/output/<design>_final.v. This
file is encrypted using industry-standard Verilog encryption techniques which are supported by all simulators in
the Achronix software tool flow.

2. Createa <sim_tool>-final directory under <project_dir>/src/.

3. Change directories (cd) to the new <project_dir>/src/<sim_tool>-final directory (make it the

current working directory) to launch subsequent simulator commands from.

Create the simulation project files and add the source files and library paths This step can be performed by
creating a filelist. f with all the library includes, design files, and compiler directives. For an example of this

type of file list, see the filelist. f examples in the section, Siemens QuestaSim Simulator Example (page 43).
Add the following to the simulator project:

a. The top-level Achronix technology-specific simulation library include directory path (incdir):
<ace_install_dir>/libraries

b. The top-level Achronix technology-specific simulation library include file, found in
<ace_install_dir>/1libraries/device_models/<device>_simmodels.sv

c. The encrypted post-route gate-level Verilog netlist file (x_fina'l. v) for the user design.

d. The top-level simulation testbench (Verilog or VHDL) files

Run the simulation and observe the output waveform.

1.7

www.achronix.com 22

http://www.achronix.com

uGorz2

Simulation User Guide

Example Design Description

The example design used in various simulation flows described in this user guide instantiates an 8-bit LFSR that can

count both up and down. There is an 8-bit output showing the result of the LFSR counter and an overflow signal.

(@ Note

If simulating a design with BRAM or LRAM and using a memory initialization file, for example,
rom_file.txt, it hasto be presentin the mem_init_files directory, relative to where the simulation tool

is invoked for all simulators except Aldec Rivera. Otherwise, the simulators will not be able to find the . txt
file and will error out. For Aldec Riviera, refer to the steps described in Aldec Riviera Simulator

Example (page 24) regarding a memory initialization file, rom_file.txt.

Ifsr_updown_cnt.v

“define CNT_WIDTH 8

module 1fsr_updown_cnt (

clk_1in 5 // Clock 1dinput

rst 5 // Reset 1input

en 5 // Enable dinput
down_not_up, // Up Down -+input
cnt 5 // Count output
ovrflow // Overflow output

)5
input clk_in;
input rst;
input en;

input down_not_up;

output [CNT_WIDTH-1 : 0] cnt;
output ovrflow;

reg [CNT_WIDTH-1 : 0] cnt;

assign ovrflow = (down_not_up) ? (cnt ==

{{ CNT_WIDTH-1{1'b0}}, 1'bl})

(cnt == {1'bl, { CNT_WIDTH-1{1'b0}}});

always @(posedge clk_1in)
begin
if (rst)
cnt <= { CNT_WIDTH{1'b0}};
else if (en) begin
if (down_not_up) begin

cnt <= {~(*(cnt & "CNT_WIDTH'b01100011)),cnt[CNT_WIDTH-1:1]};

end else begin

1.7

www.achronix.com

23

http://www.achronix.com

UG072 Simulation User Guide

cnt <= {cnt[CNT_WIDTH-2:0],~(*(cnt & 'CNT_WIDTH'b10110001))};
end
end
end // always @ (posedge clk_in)

endmodule : 1fsr_updown_cnt

Aldec Riviera Simulator Example

RTL Simulation in Riviera

Step 1 - Create Simulation Directory

Create a RivieraSim RTL simulation project directory under <project_dir>/src/, then change directories (cd)
to make <project_dir>/src asthe current working directory to launch Riviera from.

Step 2 - Create a .do File

Create thefile riviera_script.do. The following commands are used inthe riviera_script.do file to
compile and simulate the design.

#Creates a workspace called riviera_rtl_workspace in current directory. It automatically
changes directory to ./riviera_rtl_workspace
workspace.create riviera_rtl_workspace ./

#Creates a design called lfsr_updown_cnt
workspace.design.create lfsr_updown_cnt ./

#Save workspace
workspace.save

#If using a memory initialization file, copy the <mem_file>.txt to riviera_rtl_workspace
directory like this
cp ../mem_init_files/mem_file.txt .

#Add the design RTL

design.file.add ../rtl/1fsr_updown_cnt.v

design.file.add ../tb/1lfsr_updown_cnt_tb.v

design.file.add /<ACE_INSTALL_DIR>/libraries/device_models/<DEVICE>_simmodels.sv

#Compile design

#design.compile test

alog -work 1lfsr_updown_cnt -incdir {/<ACE_INSTALL_DIR>/1libraries/} -msg 5 -dbg -protect
0 —quiet {/<project_dir>/src/rtl/1fsr_updown_cnt.v} {/<project_dir>/src/tb/

1.7 24

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

1fsr_updown_cnt_tb.v} {/<ace_install_path>/libraries/device_models/
<DEVICE>_simmodels.sv}

#Initialize design
#design.simulation.initialize lfsr_updown_cnt_tb
asim -1ib 1fsr_updown_cnt -dbg -t 0 -dataset {/<project_dir>/src/results/

1fsr_updown_cnt} -datasetname {sim} 1fsr_updown_cnt_tb

#Run
run -all

#Saves workspace
workspace.close -save

quit

Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 3 - Run the Simulation

Run the script riviera_script.do to compile and simulate the design using the following command. The results

are then copied to the sim. lLog file.

/<RIVIERA_INSTALL_DIR>/riviera-pro-2014.06-x86_64/bin/vsimsa -do ./riviera_script.do >
sim. log

Once simulation is complete, the sim. Log displays a message similar to following:

sim.log

ELAB2: Elaboration final pass complete - time: 0.3 [s].

KERNEL: Kernel process initialization done.

Allocation: Simulator allocated 7432 kB (elbread=1450 elab2=5844 kernel=137 sdf=0)
KERNEL: ASDB file was created in location /simulation_example_design/src/results/
1fsr_updown_cnt/dataset.asdb

run -all

KERNEL: Reset released

KERNEL: 87000: rst 0 en 1 updown 0 cnt 11000011 overflow 0
KERNEL: 129000: rst 0 en 1 updown 1 cnt 00000010 overflow 0
KERNEL: SIMULATION PASSED!!

RUNTIME: Info: RUNTIME_@068 1fsr_updown_cnt_tb.v (66): $finish called.

KERNEL: Time: 169 ns, Iteration: 1, Instance: /lfsr_updown_cnt_tb, Process:
@INITIAL#41_2@.

KERNEL: stopped at time: 169 ns

VSIM: Simulation has finished. There are no more test vectors to simulate.
workspace.close -save

quit

L7 www.achronix.com

25

http://www.achronix.com

UGO072 Simulation User Guide

VSIM: Simulation has finished.

Step 4 - View the Waveform

In Riviera, in order to view the waveform, simulation has to be rerun. Change the directory to /
riviera_rtl_workspace. Invoke the Riviera GUI from this directory using the following command.

/<RIVIERA_INSTALL_DIR>/riviera-pro-2014.06-x86_64/bin/riviera &

Step 5 - Open the Workspace

After the Riviera GUI starts up, open the workspace file riviera_rtl_workspace. rwsp by selecting File -
Open —» Workspace.

Edit View Control Simulation Tools Window Help (@]
New "VH2 T @ ® » »[100ms 2| M 44 W L. B 3 ifofs Flw =
7 Workspace. [— - S— -
b @ Desio ~® QD@ WE 2 @Iz eeqae B a L B9 @
Design
%2 Hierarchy EIEX]
| "‘ T (4 Attributes ~

]

o Close

Recent Workspaces

Recent Files

Name Design unit Library

Ctrl+S

Iy save all Crl+Shift+5
() change Directory...
Recent Directories
= Print. Ctrl+p
¥ Print Preview Ctrl+Shift+P
Exit Crl+Q

MName Type 4
-1l aldec (RO) [a |
[+ ill} assertions (RO)

G-l ieee (RO)
[l ieee_proposed (R¥
G iy osvvm (RO)
-l ovm_2_0_3 (RO}
Bl ovm_2_1_2 (RO)
[~ il std (RO)

b 1% synopsys (RO)
B

[c

B

[E

B

[E

B

51y uvm (RO)

51l uvm_1_opl (RO)
5 iy uvm_1_1d (RO)
-k uvm_1 2 (RO)

5 il vital2000 (RO)
5 il vital9s (RO)

51l vl (RO)

- il vt (RO)

[l I v

B console [BILIE
. EE[ﬂErmrs][A Warnings][0 Messages l | ‘?@

= # HDL, SystemC, and Assertions simulater, debugger, and design environment. =
-

A0

4] ID

o # (c) 1999-2016 Aldec, Inc. All rights reserved.

=

* ™ 5 [[| Default Debug Coverage Console Documents 4

Figure 13 - Riviera Workspace

1.7 26

www.achronix.com

http://www.achronix.com

UGO072 Simulation User Guide

(@ Note

If using a memory initialization file when simulating BRAM or LRAM, copying the rom_f1ile. txt tothe
workspace design directory is important; otherwise, when re-running simulation for viewing waveform, the

rom_f1ile.txt will not be found.

Step 6 - Initialize the Simulation

Initialize simulation as shown below by right-clicking on the file 1fsr_updown_cnt_tb.v inthe Libraries pane
and selecting Initialize Simulation.

R Riviera-PRO

File Edit View Control Simulation Tools Window Help @

BRr@ MR®A XA O BB W @ 0 » »[l0ns Z|» « WG, B 2 ifofs B 3
BABRE =S hht bt O R-IROOCSEgRd O DN WER T 2IF Qe Mol B9

3 Design Manager [BH[E %2 Hierarchy B[
| debug -BEEO q |'| F 14 attributes ¥

Name
B[] Workspace 'riviera_rtl_workspace' : 1
Cl- @ Ifsr_updown_cnt {debug)
b B0 Ifsr_updown_cntyv
i [VEs Ifsr_updown_cnt_tb.v
i [l Tt_simmodels.y

Name Design unit Library

] v
Design Manager | Filesystem J

il Libraries [=)[xx]
N R ~|e

Name Type

&l 7

=
G- £F liK @ Initialize Simulation

Set as Working Library
j Detach
X Remove Library
£% Add SystemC Modules
4 Empty
£ Refresh Library
#¢ Compact Library
1 Make Library Global
% Toggle Read Only

Toggle Read Write
i] v} Kl v
E Console — EE
N A ff[O Errors]IAWamings I[Q Messages l ‘ | f
[~

= # HDL, SystemC, and Assertions simulator, debugger, and design environment.
e # (c) 1999-2016 Aldec, Inc. All rights reserved,
53

=

* [™ 5 [[Default Debug Coverage Console Documents 4

Figure 14 - Initializing Simulation

Step 7 - Add Signals to the Waveform

Add signals to the waveform by right-clicking the DUT in the Hierarchy pane and selecting Add to — Waveform.

L7 www.achronix.com 21

http://www.achronix.com

uGorz2

Simulation User Guide

File Edit View

Bv@ Hm®@ XDHDI oS

Contrel Simulation Tools Window Help

5[5 T

@ O » »|100ns

BaER

S uk

debug =~ ‘»

@ Desi... [ZI[FX]

Name

Workspace '

=8 m Ifsr_up:
Ex Ifsr_ L
er Ifsr_L
o [iEe TH_sit

JEx)

] D
sign Manager| 4 »

it Libra... [#][7]x]
0 iy L »

Name

=

Ifsr_updov
-ﬂ library.cfg

K D

ErT R DG e Ry 0 U W

o S

iz Hierarchy

Name

Design unit

Library

- ¥ $root

$root

=5 3 Ifsr_updown_ciilfsr_updown_cnt_tb

iIfsr_updown_cnt
iIfsr_updown_cnt

4 DU
-5 @ + Add to
(3 @! Coverage
e
LBl Show Source
. ﬁ protec) s Show in Objects
protec
protec Set Current Region
protec [h
Copy
¥ s 32 o
3 ﬁ z:z:z 3% Collapse
. 4 proted

[rco & »
13
13

Ctrl+C

= £ protected_3af®:protected_3af58003ab&1k:Ifsr_updown_cnt
= # protected_Zbarprotected_2ba6le?79d2F:Ifsr_updown_cnt
protected_52feprotected_52fe31a23dfc#iifsr_updown_cnt
= ﬂ protected_&cfeiprotected_6cfc9aB72f9az ifsr_updown_cnt
= # protected b2ak protected b2a6f4290676 Ifsr updown_cnt
protected_825rprotected_825bda29802¢Ifsr_updown_cnt
= # protected_37briprotected_37b2fdf39cad>:Ifsr_updown_cnt
.. 4 protected_141%protected_14101f2Bfbfas ifsr_ updown_cnt
= £ protected_131rprotected_131f2aa223azkIfsr_updown_cnt
. 4 protected c21)protected c2128dBfB6214Ifsr updown_cnt
protected_cfaziprotected_cfa2acbb443céilfsr_updown_cnt
= ﬂ protected_065r protected_06504fc0a33ch:Ifsr_updown_cnt
& # protected_Telrprotected Tel3Thb4cad9ilfsr_updown_cnt
protected_aalriprotected_aal6470f7lalkilfsr_updown_cnt
= # protected_Zb4r protected_2b44232d8445Ifsr_updown_cnt
¥ protected a96+protected a96e1142701%Ifsr updown cnt

-

B console
LA

- [#]
@ Errors][AWamingE][OMessages] |_| ?

°8 Watch 1

EHE

"| V1) Atributes ¥

s # wave {sim:/$root/1fsr_updown_cnt_tb/DUT/*} / Modified Name ! Value T}'pe Last Event Time
s # VSIM: @ object(s) traced. ! - dlicin 0 wire 0fs [~
I~ 1 » rst 1 wire Ofs
1 = en 0 wire ofs =
- 1 = drown nnt k0 wire e |:

* EEoD D Debug Coverage Console

Documents 4

Figure 15 - Adding the Waveform

Step 8 - View the Waveform

Click the Restart and Run -all button to view the waveform.

1.7

www.achronix.com

28

http://www.achronix.com

UG072 Simulation User Guide

B Riviera-PRO - Untitled4.awc* - o x
File Edit View Centrol Simulation Waveform Tools Window Help
Brvi@ W ® @A b mE W i@ i0[r|r [100ns 20 4 W G B 2 i16ans+1 NI
BARE Sk Wk B-SHMOOSLR-F O UW WE 22 2I¢ eeeate 244 09 @
@ Desi... [=[#1x] |[& uUntitled4.awc* [& Ifsr_updown_cnt thw (7% w iz Hierarchy d|d b
debug v |» || =+ - @, @ 0O @ O @ 0fs-177450ps |~ | A X 2 BIHE M » % » Mevs At -] ¥
pame Name valu o po o 50 eo oo 20 o iso Pl Name Des
E-EWorkspace' - \||\|\|||\||||||\|||\|\||\|||\|\|||||\||||\|\|\|\||\|\|||\|||||\l\ll\l\l\l\ll\l\. Cl- & $root g~
O @ rrarap | o ctkdn i1 I L A LI ALy A ——
B ifsr o] | ow orst o | B 4 DUT I
b [ifsru | b m e 1 | (3 @INITIAL)
e[l TS| | down no*1 b 0 @INITIAL#)
- e 03 @INITIAL#
. - # cnt EB BB L5 @INTIALE
Pl mourflow o] M -4 protected_le2ip
sign Manager| 4 » ¥ protected_d7crip
- 4 protected_f40%p
= = |
i Libra... [=][#][X - 4 protected_2f7>ip
O iy & = - 4 protected_eecip
f protected 05fé¢ip
¥ protected_bSdrp
f protected_la3kip
i £% library.cfg | | - Default cursor 15| | # nrotected NAdkn ™
1 3 4 1 K Ofs - 177450ps [bo|@ 1 r
Bl console 2[@X] [°R watch 1)@
i}
M 7w @ Emrors | M Warnings | @ Messages arr - “ ") Atributes ¥
g g

= # VUSTM: Simulation has finished. There are no more * || Modified Name Value Type \Last Event Time |

test vectors to simulate. ! -~ » clk_in i wire i169ns : a
- @ rst il iwire i3ns

= en i1 fwire 47ns

b @ deown nnt i1 fwire iRAns

-

[5 % [| Default | Debug Coverage Console Documents 4

Figure 16 - Viewing the Waveform

Gate-Level Simulation in Riviera

For gate-level simulation, a synthesized netlist has to first be generated using Synplify Pro before performing the
simulation.

Step 1 - Create the Synthesis Project

Create a new project in Synplify under <project_dir>/src/syn,include <ACE_INSTALL_DIR>/1libraries/
device_models/<DEVICE>_synplify.sv followed by the RTL design files and constraint files.

Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 2 - Synthesize the Design
Synthesize the design using Synplify Pro. Synplify Pro generates a gate-level netlist with . vm extension, for the

example design, the file <project_dir>/src/syn/rev_acx/lfsr_updown_cnt.vmis generated.

Step 3 - Create a Workspace

To run the gate-level simulation, create a workspace and run the script as described in RTL Simulation in
Riviera (page 24) except that the gate-level simulation uses the mapped netlist

1.7 29

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

#Creates a workspace called riviera_gate_workspace in current directory. It
automatically changes directory to ./riviera_gate_workspace
workspace.create riviera_gate_workspace ./

#Creates a design called lfsr_updown_cnt
workspace.design.create lfsr_updown_cnt ./

workspace.save

#If using a memory initialization file, copy the <mem_file>.txt to riviera_rtl_workspace
directory like this
cp ../mem_init_files/mem_file.txt .

#Add the gate netlist

design.file.add ../syn/rev_2/1fsr_updown_cnt.vm

design.file.add ../tb/lfsr_updown_cnt_tb.v

design.file.add /<ACE_INSTALL_DIR>/libraries/device_models/<DEVICE>_simmodels.sv

#Compile design

#design.compile test

alog -work lfsr_updown_cnt -incdir {/<ACE_INSTALL_DIR>/libraries/} -msg 5 -dbg -protect
0 —quiet {/<project_dir>/src/rtl/1lfsr_updown_cnt.v} {/<project_dir>/src/tb/
1fsr_updown_cnt_tb.v} {/<ACE_INSTALL_DIR>/libraries/device_models/<DEVICE>_simmodels.sv}

#Initialize design
#design.simulation.initialize lfsr_updown_cnt_tb
asim -lib 1lfsr_updown_cnt -dbg -t 0 -dataset {/<project_dir>/src/results/

1fsr_updown_cnt} -datasetname {sim} 1fsr_updown_cnt_tb

#Run
run -all

#Saves workspace
workspace.close -save

quit
Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 4 - Run the Simulation

Follow Step 3 of RTL Simulation in Riviera (page 24) to run simulation.

Step 5 - View the Results

Follow Steps 4 to the end of RTL Simulation in Riviera (page 24) to view the waveform.

1.7 30

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Post-Route Simulation in Riviera

For post-route simulation, the synthesized gate-level netlist must first be run through place and route using ACE.

Step 1 - Create the ACE Project

Create a new project in ACE under <project_dir>/src/ace. Add the gate-level netlist Lfsr_updown_cnt.vm
generated by Synplify Pro plus the constraint files.

Step 2 - Run Place and Route

Run the place and route flow, including the 'Generate Final Simulation Netlist' step to obtain a post-route netlist. In
this example, the netlist is generated under <project_dir>/src/ace/impl_1/output/
1fsr_updown_cnt_final.v.

Step 3 - Create the Workspace

Run the post-route simulation by creating a workspace called final and run the script as described in the RTL
Simulation in Riviera (page 24) section except that the post-route simulation uses the final netlist.

#Creates a workspace called riviera_final_workspace in current directory. It
automatically changes directory to ./riviera_final_workspace
workspace.create riviera_final_workspace ./

#Creates a design called 1lfsr_updown_cnt
workspace.design.create 1lfsr_updown_cnt ./

workspace.save

#Copy the 1in/exp files
cp ../tb/testvectors.in .
cp ../tb/testvectors.exp .

#If using a memory 1initialization file, copy the <mem_file>.txt to riviera_rtl_workspace
directory like this
cp ../mem_init_files/mem_file.txt .

#Add the final netlist

design.file.add ../ace/impl_1/output/1lfsr_updown_cnt_final.v

design.file.add ../tb/1fsr_updown_cnt_tb.v

design.file.add /<ACE_INSTALL_DIR>/libraries/device_models/<DEVICE>_simmodels.sv

#Compile design

#design.compile test

alog -work lfsr_updown_cnt -incdir {/<ACE_INSTALL_DIR>/1libraries/} -msg 5 -dbg -protect
0 -quiet {/<project_dir>/src/rtl/1fsr_updown_cnt.v} {/<project_dir>/src/tb/
1fsr_updown_cnt_tb.v} {/<ace_install_path>/libraries/device_models/
<DEVICE>_simmodels.sv}

1.7 31

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

#Initialize design

#design.simulation.initialize lfsr_updown_cnt_tb

asim -1lib 1fsr_updown_cnt -dbg -t 0 -dataset {/<project_dir>/src/results/
1fsr_updown_cnt} -datasetname {sim} 1fsr_updown_cnt_tb

#Run
run -all

#Saves workspace
workspace.close -save

quit
Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 4 - Run the Simulation

Follow Step 3 of RTL Simulation in Riviera (page 24) to run simulation.

Step 5 - View the Results

Follow Steps 4 to the end of RTL Simulation in Riviera (page 24) to view the waveform.

Cadence Xcelium Simulator Example

RTL Simulation in Xcelium

In order to run the RTL simulation using the Cadence Xcelium tool, follow the steps below:

A Caution!

The user must set the "XCELIUM define in order for the Achronix libraries to compile correctly.

Step 1 - Invoke the Xcelium Tool

Invoke the Cadence tool by specifying the path where the tool is installed using the command xrun and include the
libraries path, path to <DEVICE>_simmodels. sv, top-level RTL file, and testbench as shown below:

xrun -access +rwc +incdir+<ACE_INSTALL_DIR>/libraries/ /<ACE_INSTALL_DIR>/libraries/
device_models/<DEVICE>_simmodels.sv <project_dir>/src/rtl/1fsr_updown_cnt.v
<project_dir>/src/tb/1lfsr_updown_cnt_tb.v -gui -sv

Where <DEVICE> represents the name of the target device, such as AC7t1500.

1.7 32

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Table 6 - Xcelium Command Options

“

-access +rwc Yes Turn on read, write and/or connectivity access
-gui No Invoke the GUI
-sv Yes Supports System Verilog constructs

This option is to be used only when reading back
configuration memory (CMEM) contents during WGL
simulations.

+define+CMEM_READBACK No (® Note

Simulating CMEM readback function takes on
the order of hours to complete with the
Xcelium simulator.

When the compilation and elaboration of the design completes successfully, the following message is displayed at

the end of xrun. log created in the same directory where the tool is run. Also the graphical debug environment, the
SimVision GUI, is launched as shown in Step 2.

Building instance specific data structures.
Loading native compiled code: Done
Design hierarchy summary:

Instances Unique

Modules: 837 258
UDPs: 0 5
Timing outputs: 4 1
Registers: 3671 548
Scalar wires: 8208 -
Expanded wires: 695 36
Vectored wires: 1084 -
Named events: 40 4
Always blocks: 2821 286
Initial blocks: 517 111
Cont. assignments: 2988 1421
Pseudo assignments: 631 380
Compilation units: 1 1
Simulation timescale: 1ps
Writing initial simulation snapshot:
Loading snapshot worklib.bram_outputs:vp Done

SVSEED default: 1

1.7 33

www.achronix.com

http://www.achronix.com

UGO072 Simulation User Guide

ncsim: *W,DSEM2009: This SystemVerilog design is simulated as per IEEE 1800-2009
SystemVerilog simulation semantics. Use -disable_sem2009 option for turning off SV 2009
simulation semantics.

Step 2 - Add Signals to the Waveform

From the Design Browser pane in the SimVision main window, scroll down to and select the testbench,
1fsr_updown_cnt_tb.
Design Browser 1 - SimVision - 0o X
Eile Edit ¥iew Select Explore Simglation WHindows Help cadence
s | | o XD Xe @4 R EREHEREE
| Taneiv|= [0 Sllesv| P2+ 4 5 || Search Tines: [Digital Value~]] =8,
; M| EO o + ¢

Ob jects] Methods |

£ Yalue far

by
'howx

LATHS
LATR

LATS
PADIH
PAOIHOUT
PADOUT
PADOUTHOE
PRIM_GHD
FRIM_PHR
SYHC_H
1f=r_updown_cnt_th

B i 4

v

Find: StringT|| | "b “}

- [P =0 ==
-b Show contents: | In the signal list area*| lﬁlﬁlﬁlﬁlﬁ Filter:| =
L
||@|%|Q| |1 ohject =elected

Figure 17 - SimVision Main Window

From the Objects view, select the DUT and all of the required signals. Right-click, select Send to Waveform Window
to add the signals.

1.7 34

www.achronix.com

http://www.achronix.com

UGO072 Simulation User Guide

Design Browser 1 - SimVision - 0O X
Eile Edit ¥iew Select Explore Simulation Hindows Help cadence
i3 e frey o B Send To: L I
s E||oal¥DiXe | -2 REREHEEE
I@EJMF o :Ilﬂlﬁ'-ﬁ'l 'If il’“ Search Times: | Digital Value~™| | =l %%% %%V
|Q-i ™R -.||[@ 5| B0+ o
Ob jects] Methadz |
Scope: I@ All Awvailable Data j dat @ i B Value Ll
FFAE BRAFSZE_SOPH Ay >'<h e
H--{F BRAM7ZZK_STFH B AR >-<
~{F BIFZ - -
~{F CFG_CLK_IPIM w
-k CFG_CLK_OPIM -
{} CFG_IPIN Selected Items
4} CFGE_OPIM Bookmark This Wiew
o F TNVE
w43 LAT iz
B0 LATE Lopy
m-0 LATN Fores
E-LF LATNE Walsie
-k LATHMEC
-4k LATHEP Trace Drivers in Sidebar
H--{F LATHMER Trace Loads in Sidebar
H--{F LATHES
#--{F LATHR Send to Waveform Hindow
H-fF LATHS Send to Watch Window
H--{F LATR Send to Source Browser
B4 LATS Send to Schematic Tracer
B g PADIN Send to Memory Viewer
-4k EEE&E?UT Send to Design File Search
#-{} PADOUTHOE Sendl to Hew i
Lk PRIM_GND Break on Change
o{TE PRIM_PHR
E-4F sYNC M Create Force,..
B4} 1fsr_updown_cnt_th Release Force
Lo TUT Deposit Value, ..
Bl Compilation Units 4 Creste Proke...
Describe
Find:[String”| = iy & . y:
- T l= =
-b Show contents: | In the signal list area'l I.;:ﬂ I@ I@ I] I I@ IM Filter:| |
L=
||@| %|H|simuletor: + 1f=r_updown_cht_th ,DUT,rat |6 chjects selected

Figure 18 - Adding Signals to the Waveform

The Waveform window will open as shown below.

1.7 35

www.achronix.com

http://www.achronix.com

UG0o72 Simulation User Guide

Waveform 1 - SimVision - 0 @
Eile Edit Yiew Explore Format Simulation Hindows Help cadence
[[BBl > %+ " rREREAEE
Search Mames: |[Sigralw = i g Sesrch Times: |Digital Yalue~ [] %%v ?ﬂ%\/
O- QDD D @ Eoo-o Time: GE1[0 ¢ 2000ps T, G

M [TineAvi=[o

LG &) Baseline™=0

EFlCursor—Baseline™=0

Mame &v Cursor @~
Ol clk_in x

Gy entl7:01 ko

Sl down_not_up

E:E en

D ovrflow

ol st

Be| &

+
Lt
]

MooMooM M

Z[E[%)

@ %E & objects selected

Figure 19 - Xcelium Waveform Window

Step 3 - Run the Simulation

Run simulation by selecting Simulation — Run.

L7 www.achronix.com 36

http://www.achronix.com

UG0o72 Simulation User Guide

Waveform 1 - SimVision - 0 @
| Eile Edit Yiew Explore Forpat SimulationI Hindows Help caden {E}
=~ | .+ Bun F2 . ann =k T
BaBs[o »[% D ¢ & Se”dTD‘E%mEIjIjF
Search Mames: |Signal ™ =] SustenC/C/C++ debug. .. 1= =l ?%V ?%V |
M [TineAvi=[o lpsv| P @ B EOo+ o Tine: 3 [0 : 2000ps ; [
[Bazeline™=0 Step F5 !
h Ef|Cursor-Bazeline¥=0 Mest. F& !
Mame > Cur: Mext in Scope F7 t
] e e x Return Shift+F5 |
G entrzion 'h % Advance t
ES Sl down_nat_up %

25 en s Reset to Statt !

B ovrflow i Save Checkpoint., ..
|
£

O st ol Restart from Checkpoint., ..

Reinvoke Simulator,. .
Termninate & Disconnect, ..
Terminate & Post-Process,..
Dizconnect

NBO0

Set Breakpoint
Breakpoints., ..
Depozit Value, ..

Create Probe,..
Create Force,..

Create Command Alias,,.
Create Debuz Yarisble,..

Show

@ %G Run the simulation until it hits the next breakpoint 5 objects =elected |

Figure 20 - Running Simulation

Step 4 - View the Waveform

Select the View tab and Zoom Full X. The waveform will be displayed as shown below.

L7 37

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Waveform 1 - SimVision

Eile Edit Yiew Explore Format Simulation Hindows Help cadence’,
|es 2 BaBs| @ o[¥ B i X B |-+ ~rREKER
'J Search Mames: [Signal|| = i g “ Search Times:[Digital Value~]| [-] %%v %};v

. _ . =B
]F;z TineAv|=[169,000 ¥ psvg_:_{v[B ‘ Y] D[el @%[B 435, 000ps + 0 ‘ Tine: 50 [168.2000s : 170 & © © 7
g Bazeline¥™=0

m Cursor-Bazseline =169, 000ps

i Mame &¥ Cursor @~

ol clk_in 1

HEOOE B

|$|E| I 1 object =elected LI

@

Figure 21 - SimVision Waveform Window

Step 5 - View Console Messages

The console window displays messages from the testbench. It indicates that the test passed successfully and the
simulation completion time.

1.7 38

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Console - SimVision - 0 X
File Edit Yiew Simulation kHindows Help cadence
‘E:c: [% m‘h% ‘Text Seaﬁ:htl :[i'h ﬂ}
w1

E mm[T '_Jr _'”[E%I-435000p5+0. iX & ’-l;
woeliumy source Susrdlocalfcad/cadenceHoeliunHCELIUMEZZ0E Atoole fece liun/files S wnz inre Y
woelium? databasze -open waves -into waves,shm —default

probe -create -zhn lfsr_updown_cht_th OUT,clk_in lfsr_updown_cht_th, IUT,cnt lfer_updown_cht_th JUT,
down_not_up 1fzr_updown_cnt_th DUT .en lfzr_updown_chnt_th, DUT,owrf low 1Lfsr_updown_cot_th DUT,ret
Created default SHM databhaze waves

woeliumy Created probe 1

woeliumny run

Time =0 | raet. = 1 | en =0 | down_rot_up = 0 | cnt = wooocoox | owrflow = =

Time = 5000 | reat = 1 | en = 0 | down_rnot_up = 0 | cnt = 00000000 | owrflow = 0

Time = 15000 | r=t = 0 | en = 0 | dow_rnot_up = Q0 | cnt = 00000000 | owflow = 0

Time = 25000 | ret = 0 | en = 1 | dow_not_wpe = 0 | cnt = 00000001 | owrflow = 0

Time = 25000 | ret = 0 | en = 1 | dow_not_wpe = 0 | cnt = 00000010 | owrflow = 0

Time = 45000 | ret = 0 | en = 1 | dow_not_wpe = 0 | cnt = 00000101 | owrflow = 0

Time = B5000 | ret = 0 | en = 1 | dow_not_up = 0 | cnt = 00001010 | owrflow = 0

Time = €5000 | ret = 0 | en = 1 | down_not_up = 0 | cnt = 00010101 | owrflow = 0

Time = 75000 | ret = 0 | en =1 | down_not_up = 0 | cnt = 00101011 | owrflow = 0

Time = 85000 | rest = 0 | en = 1 | dow_not_up = 0 | cnt = 01010111 | owrflow = 0

Time = 95000 | ret = 0 | en =1 | dow_not_up = 0 | cnt = 10101111 | owrflow = O

Time = 106000 | rst = 0 | en = 1 | down_not_up = 0 | cnt = 01011110 | owrflow = 0

Time = 115000 | rst = 0 | en = 1 | down_not_up = 0 | cnt = 10111100 | owrflow = 0

Time = 126000 | ret = 0 | en = 1 | down_not_up = 0 | cnt = 01111000 | owrflow = 0

Time = 125000 | ret = 0 | en = 1 | down_not_up = 0 | cnt = 11110001 | owrflow = 0

Time = 145000 | rgt = 0 | en = 1 | down_not_up = Q0 | cnt = 11100011 | owrflow = O

Time = 155000 | ret = 0 | en = 1 | down_not_upe = Q | cnt = 11000110 | owrflow = O

Time = 1652000 | ret = 0 | en = 1 | down_not_upe = Q | cnt = 10001100 | owrflow = O

Time = 179000 | ret = 0 | en = 1 | down_not_upe = Q | cnt = Q0011000 | owrflow = O

Time = 12852000 | ret = 0 | en = 1 | down_not_up = Q | cnt = Q0110000 | owrflow = O

Time = 195000 | ret = 0 | en = 1 | down_not_upe = Q | cnt = 01100001 | owrflow = O

Time = 208000 | ret = 0 | en = 1 | down_not_upe = Q | cnt = 11000011 | owrflow = O

Time = 215000 | ret = 0 | en = 1 | down_not_upe = Q | cnt = 10000111 | owrflow = O

Time = 225000 | ret = 0 | en = 1 | down_not_up = 1 | cnt = 11000011 | owrflow = 0

Time = 225000 | ret = 0 | en = 1 | down_not_up = 1 | cnt = 01100001 | owrflow = 0

Time = 2459000 | ret = 0 | en = 1 | down_not_up = 1 | cnt = Q0110000 | owrflow = 0

Time = 255000 | ret = 0 | en = 1 | down_not_up = 1 | oot = Q0011000 | owrflow = 0

Time = 2658000 | ret = 0 | en = 1 | down_not_up = 1 | oot = 10001100 | owrflow = 0

Time = 275000 | ret = 0 | en = 1 | down_not_up = 1 | oot = 11000110 | owrflow = 0

Time = 285000 | ret = 0 | en = 1 | down_not_up = 1 | cnt = 11100011 | owrflow = 0

Time = 295000 | ret = 0 | en = 1 | down_not_up = 1 | cnt = 11110001 | owrflow = 0

Time = 308000 | ret = 0 | en = 1 | dow_rnot_up = 1 | cnt = 01111000 | owrflow = 0

Time = 315000 | ret = 0 | en = 1 | dow_rnot_up = 1 | cnt = 10111100 | owrflow = 0

Time = 3258000 | ret = 0 | en = 0 | dow_rnot_up = 1 | cnt = 10111100 | owrflow = 0

Time = 275000 | ret = 1 | en = 0 | down_not_up = 1 | cnt = Q0000000 | owrflow = 0

Time = 285000 | ret = 0 | en = 0 | dow_not_uwp = 1 | cnt = 00000000 | owrflow = 0

Simulation complete wia #Finishil} at Lime 425 M5 + 0 =
..H%bflisr Lpdown_ocnt_th ., v:5d #50 #Hinish: |

SinVisionl simulator |

Figure 22 - SimVision Console Window

Gate-Level Simulation in Xcelium

For gate-level simulation, a synthesized netlist has to first be generated using Synplify Pro before performing the
simulation.

1.7 39

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Step 1 - Create the Synthesis Project

Create a new project in Synplify under <project_dir>/src/syn, include <ACE_INSTALL_DIR>/libraries/
device_models/<DEVICE>_synplify.sv followed by the RTL design files and constraint files.

Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 2 - Synthesize the Design

Synthesize the design using Synplify Pro. Synplify Pro generates a gate-level netlist with . vm extension, for the
example design, the file <project_dir>/src/syn/rev_acx/1fsr_updown_cnt.vmis generated.

Rename the gate-level netlist extension from . vmto . v so that the Xcelium simulator understands that it is a Verilog
file. Otherwise, the simulator will error out. The example netlist is renamed to 1fsr_updown_cnt_gate.v.

Step 3 - Run Simulation

To run the gate-level simulation, use the same command as described in the RTL Simulation in Xcelium (page 32)

section, except that the gate-level simulation uses the mapped netlist Lfsr_updown_cnt_gate. v file instead of
source RTL files.

(® Note

If ACE-driven synthesis is used, the netlist file will be under the <project_output_dir>/syn/
rev_acx/ directory.

Xxrun -—access +rwc +incdir+<ACE_INSTALL_DIR>/libraries/ <ACE_INSTALL_DIR>/1libraries/
device_models/<DEVICE>_simmodels.sv <project_dir>/src/syn/rev_acx/1lfsr_updown_cnt_gate.v
<project_dir>/src/tb/1fsr_updown_cnt_tb.v -gui -sv

Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 4 - View Simulation Results

Follow the same steps described in RTL Simulation in Xcelium (page 32) (Steps 2 to 5) for loading the waveform and
viewing the results. When the DUT is selected, the gate-level netlist signals appear as shown below.

1.7 40

www.achronix.com

http://www.achronix.com

UGO072 Simulation User Guide

1% Design Browser 1 - SimVision - O x
File Edit Wiew Select Explore Simulation Mindows Help cadence
.. e . JULL 040,
|| on¥DhXe |@-ad "rRELREHERSE
=l ps~ m'[b, ‘ Search Times: | Value~|| =l %%w %%w
| B0
Objects | Methods |
Scope: I @ Al Available Data w| & MName £~ Yalue ﬂ'|
= o [E] G x A
EH-L}F LATS - o
H-{F LRAME4D [M_2P ®
e} LUTS [M_EF ®
M43 LUTE L x
o MUM2 o x
] MU g ﬁ—gi x
rALSE =
L [28 %
E-{3 PADIN & vee .
~-0 PADINOUT O otk x
E.} PADOUT -G e 7y =
B} PADOUTMOE - Cll g at ®
{1 PWR O er x
b SINK E g0 2 x
.4} SOURCED = s
4} SOURCET it 9"’?"" g ar sz x
Ee SYMC_N I B @ 2R A ®
] st -
El«ﬂ Ifsr_updawn_cnt_th E stz x
B DUt £ o L N x
Finet:String=] | =l iy dF O G (L % v
= [P] =] 1= &
-b Show contents: | In the signal list area~ [&5 [& [& =0 e Fiter] =
|@| §9|Q| 1 object selected |

Figure 23 - Adding Signals to the Waveform

Post-Route Simulation in Xcelium

For post-route simulation, the synthesized gate-level netlist must first be run through place and route using ACE.

Step 1 - Create the ACE Project

Create a new project in ACE under <project_dir>/src/ace. Add the gate-level netlist Lfsr_updown_cnt.vm
generated by Synplify Pro plus the constraint files.

Step 2 - Run Place and Route

Run the place and route flow, including the 'Generate Final Simulation Netlist' step to obtain a post-route netlist. In
this example, the netlist is generated under <project_dir>/src/ace/impl_1/output/
1fsr_updown_cnt_final.v.

1.7 41

www.achronix.com

http://www.achronix.com

UGO072 Simulation User Guide

Step 3 - Run Simulation

Run the post-route simulation using the same command as was used in RTL and gate-level simulation.

Xxrun -access +rwc +incdir+<ACE_INSTALL_DIR>/libraries/ <ACE_INSTALL_DIR>/libraries/
device_models/<DEVICE>_simmodels.sv <project_dir>/src/ace/impl_1/output/
1fsr_updown_cnt_final.v <project_dir>/src/tb/1fsr_updown_cnt_tb.v -gui -sv

Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 4 - View Simulation Results

In post-route simulation, when DUT is selected, no signals are displayed since the post-route netlist file is encrypted.
Instead, select the signals under Ifsr_updown_cnt_tb and follow the same steps described in RTL Simulation in
Xcelium (page 32) (Steps 2 to 5) for loading the waveform and viewing the results.

.

B

Design Browser 1 - SimVision

File Edit ¥iew Select Explore Simulation Windows Help

- 0O X

cadence

| &z

| v %

¥DhhHea

[+ ~rREREAS

‘@E‘Time.ﬂ.v -[u

=88

DPETRLE

]

LUTS

LUTE

MUK E

kL4

MUK E

FADIN
PADINCUT
PADOUT
FADOUTMOE
PR

Sk
SOURCED
SOURCE!
SYMC_M
Ifsr_updown_cnt_th

@0 DUT

Find: |String |

=l iy i

B

-b Show contents: | In the signal list area-

£+ Yalue

|

'h o

¥

=

=
o oo [[[o e

H

[CIES=]

1 ohject selected |

Figure 24 - Adding Signals to the Waveform

1.7

www.achronix.com

42

http://www.achronix.com

UG072 Simulation User Guide

Siemens QuestaSim Simulator Example

RTL Simulation in QuestaSim

Step 1 - Create the Project

Create the QuestaSim RTL simulation project directory under <project_dir>/src/questasim-rtT1,then
change directories (cd) to make it the current working directory to launch the simulator from.

Step 2 - Initialize the Work Library

Initialize the simulator work library using the following QuestaSim command:

vlib <project_dir>/src/questasim-rtl/work

Step 3 - Create the File List

Create a filelist. f file to configure the project defines, include directories, and source files. If using VHDL, the
file should appear similar to the following example:

& Warning!

VHDL simulation is only supported at the RTL simulation level. Achronix does not provide the VHDL wrapper
libraries for the Verilog library primitives. Behavioral VHDL is recommended. For Achronix IP, such as BRAM
or DSP blocks, the ACE GUI provides IP configuration tools which can generate a VHDL wrapper on top of
the configured Verilog primitive wrapper.

Example vhdl_filelist.f

+incdir+<project_dir>/src/tb

+incdir+<project_dir>/src/rtl
+incdir+<ACE_INSTALL_DIR>/1libraries
+incdir+<ace_ext_dir>/libraries
<ace_install>/libraries/device_models/<DEVICE>_simmodels.sv
<project_dir>/src/rtl/1fsr_updown_cnt.vhd
<project_dir>/src/tb/1lfsr_updown_cnt_tb.vhd

Where <DEVICE> represents the name of the target device, such as AC7t1500.

If using Verilog, the filelist. f file should appear similar to the following example:

1.7 43

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Example verilog_filelist.f

+incdir+<project_dir>/src/tb

+incdir+<project_dir>/src/rtl
+incdir+<ACE_INSTALL_DIR>/1libraries
+incdir+<ace_ext_dir>/libraries
<ace_install>/libraries/device_models/<DEVICE>_simmodels.sv
<project_dir>/src/rtl/1lfsr_updown_cnt.v
<project_dir>/src/tb/1fsr_updown_cnt_tb.v

+1libext+.v

Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 4 - Compile the Design

Before the design can be simulated, it must be compiled. If using VHDL, use the following command to compile the
design:

vcom -work <project_dir>/src/questasim-rtl/work -f <project_dir>/src/questasim-rtl/
vhdl_filelist.f

If using Verilog, use the following command to compile the design:

vlog -sv -work <project_dir>/src/questasim-rtl/work -mfcu -f <project_dir>/src/
questasim-rtl/verilog_filelist.f

Table 7 - Important Command-Line Options

“

-mfcu Multi-file compilation unit, all files in command line make up a compilation unit.

-sv Enable SystemVerilog features and keywords

Step 5 - Prepare the Simulation Run

Open the simulator and load the compiled design using the following command:

vsim -lib <project_dir>/src/questasim-rtl/work -gui

In the simulator GUI, select Simulate — Start Simulation... to prepare the simulation:

1.7 44

www.achronix.com

http://www.achronix.com

UGO072 Simulation User Guide

Questa Sim-64 10.7c_1

File Edit View Compile

EE-EEE

Agd Library Tools Layout Bookmarks Window Help

Design Optimization... = H Help [B “ &

Start Simulation

‘ ColumnLayout [AT1Column: Ryntime Options... ‘ i BL.) B 5]

-
¥Name Step > | |
(-l work Restart.. ratiepurcelliwork/simulatio...

[+-fli} floatfixib - Hi.fMoatfixlib
M ieee_env (empty) Hi.lieee_env
(x-fl, infact H/.finfact
(=l me2_lib —recHILIme2_lib
M mgc_ams (empty) Library SMODEL_TECH/./mgc_ams
(-4l mtiAvm Library $MODEL_TECH/.favm
(-l mtiovm Library $MODEL_TECH/.Jovm-2.1.2
1L mtipA (empty) Library $MODEL_TECH/./pa_lib
gm mtiRnm Library SMODEL_TECH/./rnm
[+, miuPF Library $MODEL_TECH/.Jupf lib
gm mtilvm Library SMODEL_TECH/.Juvm-1.1d
gm oSV Library SMODEL_TECH/./Joswwm
(-4 sv_std Library ~ $MODEL_TECH/.Jsv_std
(-l vh_ux01v_lib Library SMODEL_TECH/.vh_ux01v_lib
[«-{lf, vhdlopt_lib Library $MODEL_TECH/ .vhdlopt_lib
ﬂm vital2000 Library SMODEL_TECH/ Nital2000
ﬂm ieee Library SMODEL_TECH/. fieee
gm modelsim_lib Library SMODEL_TECH/./modelsim_lib
(-4 std Library $MODEL_TECH/.Jstd
[+-{li} std_developerskit Library $MODEL_TECH/./std_developerskit
[-{li} synopsys Library $MODEL_TECH/./synopsys
ﬂ{ll verilog Library SMODEL_TECH/ . .iverilog
El =
f=§ Transcript + | x|
Reading pref.tcl =
// Questa Sim-64
// Version 18.7c_1 linux_x86_f4 Oct 14 2818
Cay
// Copyright 1991-2818 Mentor Graphics Corporation
/f all Rights Reserved.
L
// QuestaSim and its associated documentation contain trade
// secrets and commercial or financial information that are the property of
// Mentor Graphics Corporation and are privileged, confidential,
// and exempt from disclesure under the Freedom of Information Act,
/f B U.5.C. Section 552. Furthermore, this information
// 1is prohibited from disclosure under the Trade Secrets Act,
// 18 U.S.C. Section 1985.
Gy
QuestaSim>
|<Nn Design Loaded> floaffixlib ‘ y

Figure 25 - QuestaSim GUI

Step 6 - Set up the Waveform

In the Start Simulation dialog, select the 1fsr_updown_cnt_tb. v testbench file to run. Click on Optimization
Options... and choose the option for "Apply full visibility to all modules(full debug mode)" and click OK:

1.7 45

www.achronix.com

http://www.achronix.com

UGO072 Simulation User Guide

» =
le. Start Simulation X
Deaign] VHDL | Verilog | Libraries | SDF | Others | 3|
¥| Name Type \Path =
[CATNES NModule /Share/generalisoftwares?
~[1] LATNR Module /share/general/Software
~[1] LATNS Module /share/general/Softwares
~[1] LATR Module /share/general/Software
~[1] LATS Module /share/general/Softwareds
:] Ifsr_updown_cnt Module /mnt/scratchlikatiepurcel
j Ifsr_updown_cnt_tb Module /mnt/scratch likatiepurcel _'
-1 LMUx2 Module /share/general/Softwares
~[1] LRAM Module /share/general/Software
L ram2K FIEN hndnle IeharaimenaraliSnfwaral |
| I tt
~Design Unit(s) Resolution——
|wrk.1f5r_up4:|mn_n:nt_tl} |V|dEFault ﬂ
~Optimization
v Enable optimization Optimization Options... |
OK | Cancel

Figure 26 - Start Simulation Dialog Box

Select the signals to monitor and add them to the waveform by selecting DUT, selecting the desired signals, and
then right-clicking and selecting Add Wave.

1.7 46

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Ele Edit Wiew Compile Simulate Add Structure Tools Layout Bookmarks Window Help

B-s@oE L& 00 O E | Hep B S| YE e weasdELEE R sAWE YRt R 8| youfSine hd
ColumnLayout [AT1columns vi||a-a-2 @9 ul o || R e) sl t B || L e T] Bes e B <h o g B | B OB & 0

BIW ey

& sim - Default $a Objects
¥/ Instance Design unit_|Design unit type| | ¥|Name
=) & Msr_updown_cnt b Ifsr_updown... Module 1 Net i
B | pes i 4 1
B I rymn—" wn... Module 1 Net i
n.. Process en Net i
@ # View nstantiation n.. Process down_not_up i Net In
D # v \wm... Process B4 cnt Y Pack... Out
¥ *wn... Process 4. ovrflow T Net Out
a7 od... ViPackage
& sd *| wipackage
=
2 #9550 wave otw| - C3pacly
Add Wave New
Add Wave To v
Add Dataflow Ci+D
Addto >
Copy cui+c
Find cuiF
Save Selected
Expand Selected
Collapse Selected
Collapse All &b Processes (Active) i
*|Name Type (iilered)
¥ >
2 >
XML Import Hint <
-
Show » 3
i Ubrary s
{3 Transcript
v_unit(fast)
_cnt_th(fast)
_cnt (fast)
VSIM 2>
Now: 0ps Delta: 0 simzisr_updown_cnt_th/DUT

Figure 27 - Selecting Signals to Observe

Step 7 - Run the Simulation

From the simulator GUI, select Simulate — Run — Run -All to start the simulation:

L7 www.achronix.com atl

http://www.achronix.com

uGorz2

Simulation User Guide

¥ Instance

& #INITIAL#18

File Edit View Compile BilELE

(=l-gf Ifsr_updown_cnt_th

Questa Sim-64 1

Design Optimization...
Start Simulation...
¥ . % - Runtime Options,

Step
Restart.

Break
End Simulation

ST _apaovT

. N = 100

Add Structure Tools Layout

¢ &

had

* Run -All
Continue
Rupn -Next

Bookmarks Window Help

Help W | LD EE| HE- e (EF[wess
ColumnLayout [s11Columns v || f-cR. 5 5. 58 B
T @R s | S HE D OR e mr o

+H A %
1¢[H how

| Wave - Default

..cnt_th/DUTiclk_in
..n_cnt_th/DUTirst

Al e e 1

& #INITIAL#28 Ifsr_updown... £ down_not_up "'D}ﬂéﬂ Dﬂ:?in
Lo #INITIALZ41 Ifsr_updown... “s cnt Lt e
L@ HNTIALETL fsr_updown... | | RECRE e DU
+-g Tt simmodels_v_uni... 7t simmod...
[+ std std
|12 #vsim_capacity#
&% Processes (Active) + & x
¥|Name Type (filtered)
-+
-+
-+
-
-+
L

ElEEBES

[+ & X
P _cnt_th(fast)
Loading r_updown_cnt(fast)
add wave -position insertpoint sim:/1fsr_updewn_cnt_tb/DUT/*
VSIM 3>
Mow: 0 ps Delta: 0 clic_in
Figure 28 - Starting the Simulation Run
Step 8 - View the Waveform
Simulation results are written to the waveform viewer for review:
L7 www.achronix.com 48

http://www.achronix.com

UG072 Simulation User Guide

= Questa Sim-64 10.7c_1 - O %
File Edit View Compile Simulate Add Wave Tools Layout Bookmarks Window Help
H-2 00 S $BRB O O-ME || Hep W 2R aR| RE e wopsy ELENGHNE S = WEUD
o+ ¥ 5. & | Layout[simlate - ColumnLayout [AT1Columns w . &L 5 & 53 ENEIEE KN omy o L aE B
&4 A s . - 3 B | seanch: el | Q@B 8a | [CLN 8.5 5 || xex
&} sim - Default ——— == + & x| §a Objects : + A x| (e ———————
¥|Instance Design unit
=} Ifsr_updown_cnt_th Ifsr_updown. period 2 ¥ ..cnt_th/DUT/clk_in | 1'hl
= buT ffsr_Updown... e 3 eq) & .n_cnt L/DUTHSt | 1ho
| j :mmikzﬁ ELUP?WH-- "35‘3;‘ 1 n_cnt_th/DUTlen | 1h1
enable
_updown... snapie 5 —2 5 UT/down_not up | 1'hl
+-8 _7t_simmodels_v_uni... _7t_simmod... up_down egi| n_cnt_tb/DUTicnt | 8heb T R R T TV ETTE AV UV ReRE R LDEEE VAN R IERRN RO LR IR ORRARAAYE
. 0 e e
(=l std std count 'he e IBUTIowf Tho
\g #ysim_capacity# overflow N e Lt ovrilow
%% Processes (Active) + & x
¥|Name Type (filtered)
o #INITIAL#41 Initial
169000 ps (|8
_!E [o5:]
||
]!l Library » | &} sim HE IﬂWave jﬂlfsrﬁupdownfcmfmv J 43|

=) Transcript) + & X

Time: 169 ns Iteration: 1 Instance: /1fsr_updown_cnt_th

Break in Module 1fsr_updown_cnt_tb at /mnt/scratchl/katiepurcell/work/simulation_example_design/src/tb/1fsr_updown_cnt_tb.v line 66

VSIM 4>
Now: 169 ns Delta: 1 sim:/ifsr_updown_cnt_th#INITIAL#41 0 psto 181504 ps

Figure 29 - QuestaSim Waveform Viewer

Gate-Level Simulation in QuestaSim

For gate-level simulation, a synthesized netlist has to first be generated using Synplify Pro before performing the
simulation.

Step 1 - Create the Synthesis Project

Create a new project in Synplify under <project_dir>/src/syn, include <ACE_INSTALL_DIR>/libraries/
device_models/<DEVICE>_synplify.sv followed by the RTL design files and constraint files.

Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 2 - Synthesize the Design

Synthesize the design using Synplify Pro. Synplify Pro generates a gate-level netlist with . vm extension, for the
example design, the file <project_dir>/src/syn/rev_acx/1lfsr_updown_cnt.vmis generated.
Step 3 - Set up the Simulation Project

Create a QuestaSim gate-level simulation project directory under <project_dir>/src/questasim-gate, then
enter this directory to make it the current working directory to launch the simulator from.

1.7 49

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Step 4 - Initialize the Work Library

Initialize the simulator work library using the following QuestaSim command:

vlib <project_dir>/src/questasim-gate/work

Step 5 - Create the File List

Createa filelist. f file to configure the project defines, include directories, and source files:

Example verilog_filelist.f

+incdir+<project_dir>/src/tb

+incdir+<project_dir>/src/rtl
+incdir+<ACE_INSTALL_DIR>/1libraries
+incdir+<ace_ext_dir>/libraries
<ace_install>/libraries/device_models/<DEVICE>_simmodels.sv
<project_dir>/src/syn/rev_acx/lfsr_updown_cnt.vm
<project_dir>/src/tb/1lfsr_updown_cnt_tb.v

+1libext+.v

Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 6 - Compile the Design

Compile the design for simulation using the following command:

vlog -sv -work <project_dir>/src/questasim-gate/work -mfcu -f <project_dir>/src/
questasim-gate/verilog_filelist.f

Step 7 - Prepare the Simulation Run

Open the simulator and load the compiled design using the following command:

vsim -lib <project_dir>/src/questasim-gate/work -gui

Complete the process by following Steps 6 to the end of RTL Simulation in QuestaSim (page 43) above.

Post-Route Simulation in QuestaSim

For post-route simulation, the synthesized gate-level netlist must first be run through place and route using ACE.

L7 www.achronix.com 20

http://www.achronix.com

UG072 Simulation User Guide

Step 1 - Create the ACE Project

Create a new project in ACE under <project_dir>/src/ace. Add the gate-level netlist Lfsr_updown_cnt.vm
generated by Synplify Pro plus the constraint files.

Step 2 - Run Place and Route

Run the place and route flow, including the '‘Generate Final Simulation Netlist' step to obtain a post-route netlist. In
this example, the netlist is generated under <project_dir>/src/ace/impl_1/output/
1fsr_updown_cnt_final.v.

Step 3 - Set up the Simulation Project

Create the QuestaSim post-route simulation project directory under <project_dir>/src/questasim-final,
then enter this directory to make it the current working directory to launch the simulator from.

Step 4 - Initialize the Work Library

Initialize the simulator work library using the following QuestaSim command:

vlib <project_dir>/src/questasim-final/work

Step 5 - Create the File List

Createa filelist. f file to configure the project defines, include directories, and source files:

Example verilog_filelist.f

+incdir+<project_dir>/src/tb

t+incdir+<project_dir>/src/rtl
+incdir+<ACE_INSTALL_DIR>/1libraries
+incdir+<ace_ext_dir>/libraries
<ace_install>/libraries/device_models/<DEVICE>_simmodels.sv
<project_dir>/src/ace/impl_1/output/lfsr_updown_cnt_final.v
<project_dir>/src/tb/1lfsr_updown_cnt_tb.v

+1libext+.v

Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 6 - Compile the Design

Compile the design for simulation using the following command:

vlog -sv -work <project_dir>/src/questasim-gate/work -mfcu -f <project_dir>/src/
questasim-final/verilog_filelist.f

1.7 51

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Step 7 - Prepare the Simulation Run

Open the simulator and load the compiled design using the following command:

vsim -1lib <project_dir>/src/questasim-final/work -gui
Complete the process by following Steps 6 to the end of RTL Simulation in QuestaSim (page 43) above.

(@ Note

In post-route simulations, the user design netlist output from ACE is encrypted. Therefore, only signals from
the testbench are observable. The post-route simulation results should functionally match exactly with the
gate-level simulation results. However, if an issue is seen in post-route simulation, run a gate-level
simulation to debug the issue.

Synopsys VCS Simulator Example

RTL Simulation in VCS

In order to run the RTL simulation using the VCS tool, the following steps have to be followed:

Step 1 - Run the VCS Simulator

Run the simulator using the ves command, including the libraries path, path to <DEVICE>_simmodels. v, top-level
RTL file and testbench as shown below:

vcs +vcstlictwait -lca -debug_pp +incdir+<ACE_INSTALL_DIR>/1libraries/ <ACE_INSTALL_DIR>/
libraries/device_models/<DEVICE>_simmodels.sv <project_dir>/src/rtl/1fsr_updown_cnt.v
<project_dir>/src/tb/1lfsr_updown_cnt_tb.v -sverilog -R -1 vcs.log

Where <DEVICE> represents the name of the target device, such as AC7t1500.

Table 8 - VCS Command Options

m

-Ica Yes IEEE encryption flow in VCS requires this option.

Creates a VPD file (when used with the VCS system task
Svcdpluson) and enables DVE for post-processing a design.

~debug_pp No Using-debug-pp can save compilation time by eliminating the
overhead of compiling with -debug and -debug_all.

-sverilog Yes Supports SystemVerilog features.

1.7 52

www.achronix.com

http://www.achronix.com

UGO072 Simulation User Guide

m

Run the executable file immediately after VCS links together
-R No the executable file. This option is required so that .vpd file is
generated which is used for analyzing waveform.

Log file name can be specified with this option where VCS
- No records compilation messages. Runtime messages are also
included in the log file if -R option is used along with -I.

+vcs+lic+wait No Tells VCS to wait for network license if none is available.

Step 2 - Start the Simulation GUI

After successful completion of compilation and simulation above, a GUI called Discovery Verification Environment

(DVE) can be used to post-process a design. In this example 1fsr_updown_cnt_tb_sim.vpd is generated after
completion of Step 1. DVE can be opened using the following command:

dve &

DVE - TopLevel.1 - [Console.1 - DVE Console] X

B Eile Edit View Simulator Signal Scope Trace Window Help =18x
0 xis - ||[@ @@ | &[0 8 x|&] al B crRBBHERBGG S |[al a5 R R - - = |

jEpmEE-0-B-E] e [eaaalalaaal]

Type: [32 =] Severty: [=] Code: [Al e «»

ol

dve>

] DVE Console x [[Hier. x] [Data x
Ready g WA | A ISR

)
Log Aistory ASearch Files AQpen.. f

Figure 30 - DVE Main Window

1.7 53

www.achronix.com

http://www.achronix.com

uGorz2

Simulation User Guide

Step 3 - Open the Simulation Database

Open the database file
1fsr_updown_cnt_tb_sim.vpd file:

i DVE - TopLevel.1 - [Source.1] - o x
|E Elle Ecit ¥iew Simulator Signal Scope Irace Window Help -8
HIT| 0 s - |4 daf B PN E 2 N [collEpma-A-s-aim-|l< 5] E TS e
Ja @@l] e |
1 = | |
[| EREa| =N § ||
Hierarchy / [[varianie [{Tvre
= Open Database x
Look in: [atiepurcellwork/simulation_example_designésro/sim/ =| 4= e
a
(1DVEfiles
Cacsre
[gimy.daidir
[fsr_updown_th_sim wpd
File iype: [Database Files (" vpet" ved;” dump;” eved) = Cancel
Desighator [v1
Time range from: | ok Time Range
4
]
1 E—] | ¥ Reuse
i [E— Y | V=
2 rype: [57 = Severity: [35 =]/ Code [an @ 4 »
1 El
Lo AHistory _ASearch Files _ACpen
dvex |
|

o

AN =)

Figure 31 - Opening the Simulation Database

Step 4 - Add Signals to the Waveform

Select the required signals from the DUT and add them to the waveform by right-clicking and selecting Add to
Waves — New Wave View:

1.7

www.achronix.com o4

http://www.achronix.com

UG072 Simulation User Guide

im/Ifsr_updown cni

[Eile Edit View Simulator Signal Scope Trace MWindow Help - | %
I o wps - B2 A denflep BB acEDrB-E- oo -|]< 5] BRI
& & @]] [
A oaTe =
vi =R = - 5 EE | p—
8 re
Hiererchy | || variame [frope | & o
HEP _ves_unit_1 (_ves_ B-clk_in EWire... 10 req up_down = 0;
STk irsr_uprown_cnt_th (L B-rst EWire... [11
~B-en [#Wire 12 @ wire ['WIDTH-1 : 0] count;
Copy n_not_up 5Wire ﬁ wire overflow;
Show Source 0l BRegl | g Localparan integer pericd = 2000;
& show Schematic i el g
n 17 /7 toggle the clock
2l Show Path Schematic 18 initial
5 - in
Dew Wave Wiew Forever
Add To Lists P Add To New Wave View Cirled begin
Add To Watches 3 #(perind/2)clk <= 1'BL;
= [Create new graup #(period/2)clk <= 1'h0;
@ Showln Class Browser 24 end
o FUTl HiErarchy, 25 end
A e e Bl gg
o polation Sirategy; 28 initial
| 29 hegin
IGye Un a0 @{posedge clk)
*. Move Down aL resst <= 1'hl;
32 repeat (20) &(posedge clk)
(=] B Loels D 3 reset <= 1'b0; 7/ release raset
Ezpand All 34 $display("Reset released");
Callapsg Parent &
GUELFEC PG 36 repeat (20) &{posedge olk) ;
Callapse &ll 37 end
Select by Levels 3 gg
Select All 40 77 simulation
| a1 initial hegin
4 i a2 repeat (1) &(posedge clk) ;
ALl i) a3
a1 $display ($time, *: rst sb en #h vpdown b cnt %b overflow sb",
Sl 45 reset, ensble, up_down, count, overflow),
o ExEral BUneoTe 46
47 while (reset == 1'bl) // reset =l
4 | ‘mnt/scratchifkatiepurcel lhworks _example_design/srcsb/ifsr_updown_cnt_th.v | & ¥ Reuse
Ifsr_updown_cnt_t.DUT =] [l ol Ifsr_updown_cnt_th.v XI

A Tyne: [FE =] severity: 28 = Code: [Al ~-l@& 4 »

The file '/mt/scratohl/Ratiepurcel l/ork /siaulation srenple_design/scc/sin/1Eer_Upamwn_cnt_th_sim vpd' vas 0pened successfully 1=

B

T wa) e e,

Lo Histor: Search Files Open.

dves

Adds signals 1o last active Wave view,

Figure 32 - Adding Signals to the Waveform

Step 5 - View the Simulation Results

Waveforms can be viewed and analyzed as shown below:

1.7 55

www.achronix.com

http://www.achronix.com

UG0o72 Simulation User Guide

.:& DVE - TopLevel.2 - [Wave.1] /mnt/scratchl/.../src/sim/Ifsr_updown_tb_sim.vpd - 0O %
P2 File Edit Wiew Simulator Signal Scope Trace Window Help ==
I 0 aps - [[& [ol ERE Y EIE EEEEEE: s -t gp i || £ $[AyEoge S| 1|
[teenaaaalnlasa [[
| e
MName Yalue T 110000
=-{DUT
- Bk St
o-reset 31
~E-ghable St
- B-up_down StC
+- B count[7:0] G'hi
- averfow St
- Mew Group
T T e T T T - I P
] Pl K | »[@
|ﬁ Wave.l x

(wnll RN =E R E =

Figure 33 - Viewing the Waveforms

Gate-Level Simulation in VCS

For gate-level simulation, a synthesized netlist has to first be generated using Synplify Pro before performing the
simulation.

Step 1 - Create the Synthesis Project

Create a new project in Synplify under <project_dir>/src/syn,include <ACE_INSTALL_DIR>/libraries/
device_models/<DEVICE>_synplify.sv followed by the RTL design files and constraint files.

Where <DEVICE> represents the name of the target device, such as AC7t1500.

Step 2 - Synthesize the Design

Synthesize the design using Synplify Pro. Synplify Pro generates a gate-level netlist with . vm extension, for the
example design, the file <project_dir>/src/syn/rev_acx/1fsr_updown_cnt.vmis generated.
Step 3 - Run the VCS Simulator

To run the gate-level simulation, use the same command as described in RTL Simulation in VCS (page 52) above
except that the gate-level simulation uses the mapped netlist 1fsr_updown_cnt.vm instead of source RTL files.

vcs +vcstlictwait -lca -debug_pp +incdir+<ACE_INSTALL_DIR>/libraries/ <ACE_INSTALL_DIR>/
libraries/device_models/<DEVICE>_simmodels.sv <project_dir>/src/syn/rev_2/
1fsr_updown_cnt.vm <project_dir>/src/tb/1fsr_updown_cnt_tb.v -sverilog -R -1 vcs.log

Where <DEVICE> represents the name of the target device, such as AC7t1500.
Complete the process by following Steps 2 to the end of RTL Simulation in VCS (page 52).

1.7 56

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Post-Route Simulation in VCS

For post-route simulation, the synthesized gate-level netlist must first be run through place and route using ACE.

Step 1 - Create the ACE Project

Create a new project in ACE under <project_dir>/src/ace. Add the gate-level netlist Lfsr_updown_cnt.vm
generated by Synplify Pro plus the constraint files.

Step 2 - Run Place and Route

Run the place and route flow, including the 'Generate Final Simulation Netlist' step to obtain a post-route netlist. In
this example, the netlist is generated under <project_dir>/src/ace/impl_1/output/
1fsr_updown_cnt_final.v.

Step 3 - Run the VCS Simulator

Run the post-route simulation using the same command as used in RTL and gate-level simulation using the final
netlist:

vcs +vcstlictwait -lca -debug_pp +incdir+<ACE_INSTALL_DIR>/1libraries/ <ACE_INSTALL_DIR>/
libraries/device_models/<DEVICE>_simmodels.sv <project_dir>/src/ace/impl_1/output/
1fsr_updown_cnt_final.v <project_dir>/src/tb/1fsr_updown_cnt_tb.v -sverilog -R -1

vcs. log

Where <DEVICE> represents the name of the target device, such as AC7t1500.
Complete the process by following Steps 2 to the end of RTL Simulation in VCS (page 52).

(@ Note

In post-route simulations, the user design netlist output from ACE is encrypted. Therefore, only signals
from the testbench are observable. The post-route simulation results should functionally match exactly
with the gate-level simulation results. However, if an issue is seen in post-route simulation, run a gate-level
simulation to debug the issue.

1.7 57

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Chapter 4 : DSM Simulation Package

Device Simulation Model

Many designs require a simulation overlay named the device simulation model (DSM). This package combines the
full RTL of the 2D network on chip (NoC) with bus functional models (BFMs) of the interface subsystems that
surround the NoC and FPGA fabric. This combination of true RTL for the 2D NoC and models for the interface
subsystems allows developing designs within a fast responsive simulation environment, while achieving cycle-
accurate interfaces from the NoC, and representative cycle responses from the hard interface subsystems. This
simulation environment allows a designer to iterate rapidly to develop and debug their design.

Description

The DSM provides full RTL code for the NoC, combined with BFMs of the surrounding interface subsystems. The

structure is wrapped within a SystemVerilog module named per device (i.e., ac7t1500). Instantiate one instance of
this module within the top-level testbench.

In addition, the DSM provides binding macros such that binding between elements of a design and the same
elements within the device is possible. For example, the design might instantiate a 2D NoC access point (NAP). It is
then necessary to bind this NAP instance to the NAP in the correct location within the 2D NoC by using the
"ACX_BIND_NAP_RESPONDER, "ACX_BIND_NAP_INITIATOR, "ACX_BIND_NAP_HORIZONTAL,
"ACX_BIND_NAP_VERTICAL or "ACX_BIND_NAP_ETHERNET macro, whichever is appropriate for the design.

Similarly, it is necessary to bind between the ports on the design and the direct-connection interface (DCI) for the
interface subsystem. Each DCI within the device is connected to a SystemVerilog interface. This interface can then
be directly accessed from the top-level testbench, and signals assigned between the SystemVerilog interface and
the ports on the design.

Selecting the Required DSM

DSM Utility Package

There is a DSM package for each device, with each DSM representing the specific features of that device. It is
therefore necessary to select the correct DSM within a simulation testbench. Selection of the correct DSM is
achieved by including the appropriate DSM utility package. The package then creates macros and functions to

access the appropriate DSM. The utility package defines the macro ACX_DEVICE_NAME, which is then used to
instantiate and refer to the DSM. The following DSM utility packages are available.

Table 9 - DSM Utility Packages

“ DSM Utility Package ACX_DEVICE_NAME

AC7t1500, AC7t1500ESO ac7tl500_utils.svh ac7t1500

1.7 58

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

“ DSM Utility Package ACX _DEVICE_NAME

AC7t1400, AC7t1400ESO ac7tl400_utils.svh ac7t1400

AC7t800, AC7t800ESO ac7t800_utils.svh ac7t800

Device-Specific Simulation Files

To allow for reusable code, the Achronix simulation flow creates a macro for each device, of the form
ACX_DEVICE_<full device name>.The appropriate macro is present in simulation (and synthesis) when the
appropriate ACE library file is included in the project. These ACE library files are located within the
<ACE_INSTALL_DIR>/1libraries/device_models/<full device name>_simmodels.sv file. The
following table lists the available simmodels. sv files, and the device specific macro that each creates.

Table 10 - Simulation Model Files and Defines

“ Simulation Model File ACX_DEVICE Macro

AC7t1500 AC7t1500_simmodels.sv ACX_DEVICE_AC7t1500
AC7t1500ESO AC7t1500ESO_simmodels.sv ACX_DEVICE_AC7t1500ESO
AC7t1400 AC7t1400_simmodels.sv ACX_DEVICE_AC7t1400
AC7t1400ESO AC7t1400ESO_simmodels.sv ACX_DEVICE_AC7t1400ESO
AC7t800 AC7t800_simmodels.sv ACX_DEVICE_AC7t800
AC7t800ESO AC7t800ESO_simmodels.sv ACX_DEVICE_AC7t800ESO

Instantiate DSM Utility Package

Using the device specific macros, it is possible to create a general DSM instantiation that can be used for multiple
devices. In the following example, the ACX_DEVICE _xxxx macro is used to select the appropriate DSM utility
package. The macros subsequently created by the package are then used to select the appropriate DSM.

// Include the appropriate DSM utility file which defines the appropriate macros
// If an unsupported device 1is selected, then compilation will fail
“ifdef ACX_DEVICE_ACT7t1500ESO
“include "ac7t1l500_utils.svh"
“elsif ACX_DEVICE_AC7t1500
“include "ac7t1l500_utils.svh"
“elsif ACX_DEVICE_ACT7t800ESO
“dinclude "ac7t800_utils.svh"

1.7 59

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

‘endif

// Instantiate the DSM
// ACX_DEVICE_NAME is defined in the DSM utility file for the selected device
// Connect the chip_ready signal
"ACX_DEVICE_NAME “ACX_DEVICE_NAME (
.FCU_CONFIG_USER_MODE (chip_ready),

)

Version Control

The DSM is version controlled. Within a release, new functions might be added and older functions might be
deprecated or replaced. The release is indicated both in the package name
(ACE_<major>.<minor>.<patch>_DSM_sim_<update>.zip/tgz) andinthe readme file placed in the root
directory of the package.

To ensure that the correct version of the DSM is used, a task must be included within the design testbench to
confirm the version compatibility. This function should be instantiated as follows:

// The ACX_DEVICE_NAME macro is defined for each DSM within its appropriate utility
package
initial begin
// Ensure correct version of DSM is being used
// This design requires 10.1 as a minimum
"ACX_DEVICE_NAME.require_version(10, 1, 0, 0);
end

require_version() Task

The require_version task has four arguments. In order:
1. Major Version - Matches the major version of the release
2. Minor Version - Matches the minor version of the release
3. Patch - Matches the patch version of the release (optional)
4. Update - Matches the update number of the release (optional)

If either patch or update is not specified, then these arguments should be set to 0. For example, for the 10.1 release,
the arguments would be set as 10,1,0,0.

(@ Note

The values can be expressed either as numbers (0-9) or as strings ("0"-"9") or as letters ("a/A", "b/B"), with
the letters "a" and "b" representing alpha or beta releases. When deciding on the priority of a release, a
number represents a more recent release than a letter; therefore, 8.3.alpha (defined as 8,3,"a",0) precedes
the full 8.3 release (designated as 8,3,0,0).

L7 www.achronix.com 60

http://www.achronix.com

Simulation User Guide

uGorz2

Example Design

An example structure of a user testbench, instantiating both the DSM and the user design under test is shown in the
following diagram (see figure 34). This example shows the macros required for the responder NAPs, and the DCls for
two instances of the GDDR6 subsystem. For other forms of NAPs, or for other DCI types, such as DDR, consult

the Bind Macros (page 64) and DSM Direct-Connect Interfaces (page 65) tables.

User testbench ,/,,— - assign ac7t1500.gddr6_xx_dcO =my_dc0_1;, <& ———_ _ ~
\
___________ 4L ACX_BIND_NAP_SLAVE(dut.my_napl, 4, 5))
,,,,,, / % !
= Ld 1 A}
-,] 1
dut e i ac7t1500] gddr6_xx_dc0
Y : ; g (SV interface)
/ ! ! g
! I
1
Memory | i EEn -
interface v, \=
my_dc0_1 it
rki 14 | C)
RiTit
dcO
Memory =
interface
my_dc0_2 y <—1l0CO
\
\\
(W 2ddr6_yy_dcO
(SV interface)
1
~———_ 1
—————————————— N ————# ACX_BIND_NAP_SLAVE(dutmy_nap2, 2, 2))
N
/

N

~
S~ assign ac7t15600.gddr6_yy_dcO = my_dc0_2; -a—-——

62297007-01.2022.10.08

Figure 34 - Example Simulation Structure

In the previous example, there are two NAPs, my_napl and my_nap2. In addition, there are two direct-connect
interfaces, my_dcO_1 and my_dc@_2. In the top-level, testbench bindings are made between the NAPs in the

design and the NAPs within the device using the ACX_BIND_NAP_RESPONDER macro:
- This macro supports inserting the coordinates of the NAP within the 2D NoC in order that the simulation is

aligned with physical placement of the NAP on silicon.
- The DCls are ports on the user design. These ports are assigned to the appropriate signals within the device

direct-connect SystemVerilog interface.
The Verilog code to instantiate the example, based on using the Speedster7t AC7t1500 FPGA, follows.

//
// Instantiate the DSM

| e

61

L7 www.achronix.com

http://www.achronix.com

uGorz2

Simulation User Guide

// Connect the chip ready port

// Note : All DSM ports are defined, so can be directly connected if required
"ACX_DEVICE_NAME ‘ACX_DEVICE_NAME(.FCU_CONFIG_USER_MODE (chip_ready));

// Set the verbosity options on the messages

// Use the inbuilt set_verbosity() task.

initial begin
"ACX_DEVICE_NAME.set_verbosity(2);

end

/] e eeeoooeoooooooo
// Bind NAPs

/] e eeeoooeeooooooo
// Bind my_napl to location 4,5
*ACX_BIND_NAP_AXI_RESPONDER(dut.my_napl,4,5);

// Bind my_nap2 to location 2,2
*ACX_BIND_NAP_AXI_RESPONDER(dut.my_nap2,2,2);

/] oo
// Connect to DC -interfaces

/] oo

// Create signals to attach to direct-connect interface
logic my_dcO_1_clk;

logic my_dcO_1_awvalid;

logic my_dcO_1_awaddr;

logic my_dcO_1_awready;

logic my_dc0O_2_clk;

logic my_dcO_2_awvalid;

logic my_dcO_2_awaddr;

logic my_dcO_2_awready;

// Connect signals to gddr6_xx_dcO interface within ac7t1500 device
// Inputs to device

assign “ACX_DEVICE_NAME.gddr6_xx_dcO.awvalid = my_dcO_1_awvalid;
assign “ACX_DEVICE_NAME.gddr6_xx_dcO.awaddr my_dcO_1_awaddr;

// Outputs from device
assign my_dcO_1_awready = “ACX_DEVICE_NAME.gddr6_xx_dc0O.awready;

// Connect signals to gddr6_xx_dcO interface within ac7t1500 device
// Inputs to device

assign “ACX_DEVICE_NAME.gddr6_yy_dcO.awvalid = my_dcO_2_awvalid;
assign “ACX_DEVICE_NAME.gddr6_yy_dcO.awaddr my_dcO_2_awaddr;

// Outputs from device
assign my_dcO_2_awready = “ACX_DEVICE_NAME.gddr6_yy_dc0O.awready;

1.7

www.achronix.com

62

http://www.achronix.com

UG072 Simulation User Guide

] e

// Remember to connect the clock!

/] =mmmm e eeeeeoooeooooooooo
assign my_dcO_1_clk = "ACX_DEVICE_NAME.gddr6_xx_dc0.clk;

assign my_dcO_2_clk = "ACX_DEVICE_NAME.gddr6_yy_dc0.clk;

(@ Note

When using bind macros, the column and row coordinates of the target NAP can be specified. To ensure
consistency between simulation and silicon, add matching placement constraints to the ACE

placement . pdc file, for example:

In simulation

"ACX_BIND_NAP_AXI_RESPONDER(dut.my_napl,4,5);

In place and route

set_placement -fixed {i:my_nap} {s:x_core.NOC[4][5].logic.noc.nap_s}

set_verbosity() Task

Alongside specifying the required simulation package version and instantiating the device, the verbosity of the
messages that are output from the device simulation model can be controlled. These levels are controlled by the

set_verbosity task. Refer to the previous code sample for an example showing how to call this function.

The verbosity levels are defined in the following table.

Table 11 - Verbosity Levels

0 Print no messages.
1 Print messages from initiator and responder interfaces only.
2 Print messages from level 1 and from each NoC data transfer.

Print messages from level 2, port bindings and NoC performance
statistics.

Chip Status Output

From initial simulation start, the device operates similarly to its silicon equivalent with an initialization period when
the device is in reset. In hardware this occurs during configuration as the bitstream is loaded. After this initialization
period, the device asserts the FCU_CONFIG_USER_MODE signal to indicate that it has entered user mode, whereby
the design starts to operate.

L7 www.achronix.com 63

http://www.achronix.com

UG072 Simulation User Guide

It is suggested that the top-level testbench monitor FCU_CONFIG_USER_MODE and delay drive stimulus into the
device until this signal is asserted (shown in the previous example by use of a testbench chip_ready signal).

Bind Macros

The following bind statements are available.

Table 12 - Bind Macros

user_nap_instance, To bind a horizontal streaming NAP,
ACX_BIND_NAP_HORIZONTAL noc_colunm, noc_row instance ACX_NAP_HORIZONTAL.

user_nap_instance, To bind a vertical streaming NAP, instance
ACX_BIND_NAP_VERTICAL noc_colunm, noc_row ACX_NAP_VERTICAL.
ACX_BIND_NAP_AXI_INITIATOR(user_nap_instance, To bind an AXl initiator NAP, instance
2 noc_colunm, noc_row ACX_NAP_AXI_INITIATOR.
ACX_BIND_NAP_AXI_RESPONDER user_nap_instance, To bind an AXI responder NAP, instance
@ noc_colunm, noc_row ACX_NAP_AXI_RESPONDER.

user_nap_instance, To bind an Ethernet NAP instance,
ACX_BIND_NAP_ETHERNET noc_colunm, noc_row ACX_NAP_ETHERNET.

Table Notes

1. user_nap_instance isrelative to the testbench, not to the top of the simulation. Normally
user_nap_instance would be of the form DUT.<hierarchical_path_to_nap>.

2. For the Speedster7t AC7t800 FPGA, these macros are ACX_BIND_NAP_AXI_INITIATOR
and ACX_BIND_NAP_AXI_RESPONDER.

Direct-Connect Interfaces

Within the device, the non-NAP connections between the high-speed interface subsystems (such as GDDR, DDR,
Ethernet and SerDes) and the fabric are known as direct-connect interfaces (DCls). These are comprised of:

- Additional data ports in the case of the memory interfaces (AXI)

- Dedicated data interfaces for SerDes (direct mode)

- Status and control for Ethernet
For full details of each of the subsystem DCI ports, refer to the appropriate interface subsystem user guide.
Connecting from the user design to the DCI ports involves one of two methods:

- Connecting directly using the interfaces built into the DSM

1.7 64

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

- Using an ACE-generated port binding file

(® Note

The Speedster7t AC7t800 FPGA only incorporates DCls for the SerDes direct mode. All other data flows
between interface subsystems and the fabric are made using the NAP and 2D NoC.

Suggested Flows

In general, the direct connection to the DSM ports is used at the commencement of a project, when an ACE project
might not yet have been developed. The decision can be made later in the process to use the ACE bindings file. Both
methods achieve the same objective —connecting the DUT I/0 ports to the appropriate locations within the DSM.

- Direct connect method - makes use of SystemVerilog interfaces. Therefore, it is possible to add additional
features such as protocol checking and performance measurements into these interfaces.

- ACE port binding method - assists with confirming consistency of the DUT ports as presented to ACE (from
both the netlist and the ACE generated IP files). This flow can be used to help debug any port naming
mismatches prior to committing to place and route.

The two methods are detailed as follows.

DSM DC Interfaces

The DSM has a SystemVerilog interface for each DCI port. The available interfaces are listed in the following table.

Table 13 - DSM Direct-Connect Interfaces

Physical GDDR6 SystemVerilog Address
Subsystem Interface Name Data Width X
y Location @ Channel Interface Type Width
GDDR6 gddr6_1_dco West 1 0 t_ACX_AXI4 512 33
GDDR6 gddr6_1_dcl West 1 1 t_ACX_AXI4 512 33
GDDR6 gddr6_2_dco West 2 0 t_ACX_AXI4 512 33
GDDR6 gddr6_2_dcl West 2 1 t_ACX_AXI4 512 33
GDDR6 gddr6_5_dco East1 0 t_ACX_AXI4 512 33
GDDR6 gddr6_5_dcl East1 1 t_ACX_AXI4 512 33
GDDR6 gddr6_6_dco East2 0 t_ACX_AXI4 512 33
GDDR6 gddr6_6_dcl East2 1 t_ACX_AXI4 512 33
DDR4 ddr4_dco South - t_ACX_AXI4 512 40
Ethernet ethernet_0_dc North West - t‘ACX‘EF;ERNET‘D - -
1.7 65

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Physical GDDR6 SystemVerilog . Address
Location @ Channel Interface Type Lizidz Eladn Width

Subsystem Interface Name

t_ACX_ETHERNET_D

Ethernet ethernet_1_dc North East - cT - -
Serdes fzzdes—etho—qo North West - t_ACX_SERDES_DCI 128 -
Serdes fj;des—etho—ql North West - t_ACX_SERDES_DCI 128 -
Serdes fzzdes—ethl—qo North East® . t_ACX_SERDES_DCI 128 -
Serdes serdes_ethl_ql ik East? - t_ACX_SERDES_DCI 128 -

_dc

Table Notes

1. Physical orientation west-to-east is with regards to viewing the die in the floorplan view within ACE. The die is actually rotated about its
vertical axis when packaged. Therefore, an interface shown on the floorplan, and listed in this table, as being on the west is physically on
the east side of the device when located on the PCB. The north-to-south orientation is not affected and matches with this table, the ACE
view, and the device on board.

2. Present on the Speedster7t AC7t800 DSM.

(@ Note

Not all interfaces are available in all devices. Please consult the appropriate device datasheet to understand
which interfaces are present in the selected device.

Direct Connect to DSM Interfaces

To connect to any of these interfaces, create a signal in the testbench, and connect it as a port on the DUT. Also,
connect the signal to the DSM, using the DSM instance name, the interface name from the DSM Direct-Connect
Interfaces (page 65) table, and the element name.

The following example shows how to connect the awready and awval-id signals for a GDDR AXl interface.

// Declare the signals in the testbench

// Note : In order to switch between port binding file and direct connect easily, the
signal

// names must match the DUT IO port names.

logic dut_awready;

logic dut_awvalid;

// Connect to the DSM GDDR_1, DC port 0.
// awready is an output from the DSM, and an 1input to the DUT
assign dut_awready = “ACX_DEVICE_NAME.interfaces.gddr6_1_dcO.awready;

1.7 66

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

// awvalid is an 1input to the DSM, and an output from the DUT
assign “ACX_DEVICE_NAME.interfaces.gddr6_1_dcO.awready = dut_awvalid;

// Instantiate the DUT
my_design DUT (

.dut_awready (dut_awready),
.dut_awvalid (dut_awvalid),

Port Binding File to DSM Interfaces

To use the port binding file, configure the following in the testbench:
1. Create an ACE project (a netlist is not required at this stage).
2. Configure all interface subsystem IP.

3. Generate the subsystem IP files, including a file named
<design_name>_user_design_port_bindings.svh.

4. Declare the signals in the testbench. The signal names must be the same as the port names on the DUT since
these are the names that the port binding file uses.

5. Include the port binding file in the testbench.

6. Instruct the DSM to set all its DC Interfaces to be in monitor mode only. The latter is important because without
this, the DSM drives the ports from the fabric to the subsystems in addition to the DUT driving the same ports
via the binding file. This situation can lead to unresolved signals and simulation failure. The DSM DC interfaces

are set to monitor mode when the define ACX_DSM_INTERFACES_TO_MONITOR_MODE is enabled.

() Notes
- In the Achronix reference design flow the generated subsystem IP files are saved to the /src/
joring directory rather than the default /src/ace/ioring_des1ign directory.

- The define ACX_DSM_INTERFACES_TO_MONITOR_MODE must be included in the simulation
command line, so that it is present when the DSM is compiled. It cannot be included in the user

testbench as this is compiled after the DSM.

- Inthe provided Achronix reference design flow, ACX_DSM_INTERFACES_TO_MONITOR_MODE is
defined inthe /sim/<simulator>/system_files_bfm.fand /sim/<simulator>/
system_files_rtl.f files.

The following example shows how to connect all of the DUT ports using the port binding file.

system_files_bfm.f

L7 www.achronix.com o7

http://www.achronix.com

UG072 Simulation User Guide

Set whether the DSM DCI +interfaces are set to monitor mode only
+define+ACX_DSM_INTERFACES_TO_MONITOR_MODE

Testbench

// In the testbench
// Declare ALL the DUT signals
logic dut_awready, dut_awvalid ;

// Include the port binding file
“include "../../src/ioring/my_design_user_design_port_bindings.svh"

// Instantiate the DUT
my_design DUT (
.dut_awready (dut_awready),
.dut_awvalid (dut_awvalid),

Dual-Mode Connections to DSM Interfaces

Because there is a define required for the port binding method, this define can be used within the testbench to
toggle between the two connection methods. This capability allows support for both flows, and switching between
them simply by enabling or disabling the define. An example of a testbench which supports both methods follows.

// Declare the signals in the testbench

// Note : In order to switch between port binding file and direct connect easily, the
signal

// names must match the DUT IO port names.

logic dut_awready;

logic dut_awvalid;

// The options below support connect to the DSM DC ports either by using the ACE
generated
// port binding file, or else using the DSM DC Interfaces.
"ifdef ACX_DSM_INTERFACES_TO_MONITOR_MODE
“include "../../src/dioring/my_design_user_design_port_bindings.svh"
‘else
assign dut_awready = ACX_DEVICE_NAME.interfaces.gddr6_1_dcO.awready;
assign “ACX_DEVICE_NAME.interfaces.gddr6_1_dcO.awready = dut_awvalid;
‘endif

// Instantiate the DUT
my_design DUT (

1.7 68

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

.dut_awready (dut_awready),
.dut_awvalid (dut_awvalid),

Clock Frequencies

In addition to binding to the interfaces, it is possible to control the frequencies of the clocks generated by these
interfaces. For design integrity, the clock frequencies set within simulation should match the desired design
operating frequencies. For design implementation, the frequencies are configured within the ACE 1/0 Designer. For

simulation, the set_clock_period function is provided.
The following example shows setting the GDDRG6 east 1 controller to an operating frequency of 1 GHz (suitable for 16
Gbps operation). Because the DC interface operates at half the controller frequency, it is configured for 500 MHz.

Using this method, first ensure that the simulation operates at the correct frequencies. Second, ensure that each
subsystem is able to operate at a different frequency, if required.

// Set default GDDR6 clock frequency to 1000 ps = 1GHz
localparam GDDR6_CONTROLLER_CLOCK_PERIOD = 1000;

// Configure the NoC interface of GDDR6 El1 to 1GHz
"ACX_DEVICE_NAME.clocks.set_clock_period("gddr6_5_nocO_clk",
GDDR6_CONTROLLER_CLOCK_PERIOD);

// Configure the DC 1interface of GDDR6 E1 to 500MHz, (double the period of the NoC
interface)

"ACX_DEVICE_NAME.clocks.set_clock_period("gddr6_5_dcO_clk",
GDDR6_CONTROLLER_CLOCK_PERIOD*2) ;

(@ Note

The set_clock_periiod function is within the DSM. This model has a default timescale value of 1ps.
Therefore, the specified clock period is applied in picoseconds, irrespective of the timescale value of the
calling module.

The following clock frequency interfaces are available.

Table 14 - Clock Frequency Interfaces

PhySIcaI Locatlon GDDR6 Channel

gddr6_0_noco clk West 0 NoC
GDDR6 gddr6_0_noc1_clk ® West 0 NoC 1
gddr6_1_noco_clk ® West 1 NoC 0

1.7 69

www.achronix.com

http://www.achronix.com

uGorz2

Simulation User Guide

PhYSIcal Locatlon GDDR6 Channel

DDR4

DDR5

PCle

gddr6_1_nocl clk

gddr6_2_noc0_c1k(3)

gddr6_2_nocl_clk @)

gddr6_3_nocO_clk
gddr6_3_nocl_clk
gddr6_4_noc0O_clk
gddr6_4_nocl_clk
gddr6_5_noc0O_clk
gddr6_5_nocl_clk
gddr6_6_noc0O_clk
gddr6_6_nocl_clk
gddr6_7_nocO_clk
gddr6_7_nocl_clk
gddr6_1_dcO_clk
gddr6_1_dcl_clk
gddr6_2_dcO_clk
gddr6_2_dcl_clk
gddr6_5_dcO_clk
gddr6_5_dcl_clk
gddr6_6_dc0O_clk
gddr6_6_dcl_clk
ddr4_noc0O_clk

ddr4_dcio_clk
ddr5_noc0_c1k(4)

pciexl6_clk @

pciex1l6_dc_clk

West 1 NoC

West 2 NoC

West 2 NoC

West 3 NoC

West 3 NoC

East 0 NoC

East 0 NoC

East 1 NoC

East 1 NoC

East 2 NoC

East 2 NoC

East 3 NoC

East 3 NoC

West 1 DCI

West 1 DCI

West 2 DCI

West 2 DCI

East 1 DCI

East 1 DCI

East 2 DCI

East 2 DCI

South NoC

South DCI

South NoC

Gen5 PCle x16

Gen5 PCle x16 DCI

1.7

www.achronix.com

70

http://www.achronix.com

UG072 Simulation User Guide

PhYSicaI Location (1) GDDR6 Channel

pciex8_clk Genb5 PCle x8
ethernet_ref_clk @ Ethernet reference clock @ -
Ethernet ethernet_ffo_clkm Ethernet FIFO 0 clock 2/ -
ethernet_ffl_clk(3) Ethernet FIFO 1 clock) -
Configuration cfg_clk System wide configuration clock -

Table Notes

1. Physical orientation west-to-east is with regards to viewing the die in floorplan view within ACE. The die is actually rotated about its
vertical axis when packaged. Therefore, an interface shown on the floorplan, and listed in this table, as being on the west is physically on
the east side of the device when located on the PCB. The north-to-south orientation is not affected and matches with this table, the ACE
view, and the device on board.

2. The Ethernet clocks are common to both Ethernet subsystems. In simulation they must be set to operate from the same clock
frequencies.

3. Presentin the AC7t800 DSM.
4. Only present in the Speedster7t AC7t800 DSM.

Configuration

A number of the interface subsystems require configuration at power-up. In the physical device, this configuration
would be performed by the bitstream pre-programming the relevant configuration registers. Within the simulation
environment, there are tasks that can read configuration files and apply those files to the relevant interface
subsystem. An example of applying a configuration is shown in the following code snippet.

// Configuration
/]~

// Call function within device to configure the registers

// By using fork-join, the two configurations will be run in parallel, configuring both
// Ethernet blocks. This saves overall simulation time.

// Both blocks are configured the same, hence the use the same file

initial
begin
fork
"ACX_DEVICE_NAME.fcu.configure("ethernet_cfg.txt", "etherneto");
"ACX_DEVICE_NAME.fcu.configure("ethernet_cfg.txt", "ethernetl");
join
end
1.7 71

www.achronix.com

http://www.achronix.com

uGorz2

Simulation User Guide

Startup Sequence

While the task fcu.configure() is processing the configuration (including waiting for any polling to return a valid

value), the Chip Status Output (page 63) is not asserted. This behavior mirrors that where the device only enters user

mode when configuration is completed.

The simulation testbench can issue configuration processes as shown in the previous code snippet, and when

the Chip Status Output is asserted, the testbench knows the device is correctly configured. The testbench can then

proceed to apply the necessary tests.

fcu.configure() Task

The task fcu.conf1igure has the following arguments:

fcu.configure (<configuration filename>, <interface subsystem name>);

The following interface subsystem names are supported:

Table 15 - Configuration Subsystem Names

Subsystem @

GDDR6

DDR4

DDR5
Ethernet

GPIO North
GPIO South

PCle x8

Interface Subsystem Name @

gddre6_0
gddre6_1
gddr6_2
gddre6_3
gddre6_4
gddr6_5
gddr6_6
gddre_7
ddr4

ddr5
ethernet0
ethernetl
gpio_n
gpio_s

pcie_0

West 0

West 1

West 2

West 3

East0

East1l

East2

East3

South

South

North

North

North

South

North

Physical Location &)

1.7

www.achronix.com

72

http://www.achronix.com

UG072 Simulation User Guide

Subsystem ¥ Interface Subsystem Name @ Physical Location 3

PCle x16 pcie_1 North

All subsystems full®@ -

Table Notes
1. Theinterface subsystem name is case insensitive.

2. When using the full subsystem name, the full 42-bit address is required in the configuration file. When selecting an individual
subsystem, only the 28-bit address is required. Refer to Configuration File Format (page 73) for details.

3. Physical orientation west-to-east is with regards to viewing the die in floorplan view within ACE. The die is actually rotated about its
vertical axis when packaged. Therefore, an interface shown on the floorplan, and listed in this table, as being on the west is physically on
the east side of the device when located on the PCB. The north-to-south orientation is not affected.

4. Not all subsystems are available in all devices. Please refer to your specific device datasheet for details of available subsystems.

Configuration File Format

The configuration file has the following format:

Configuration file
Supports both # and // comments

A comment line
// Another comment line
Format is <cmd> <addr> <data>

Commands are

"w" - write

"r" - read

"v" - read and verify

"d" - Wait for the number of cycles 1in the data field.

The address field is unused

Address is either 28-bit, (7 hex characters), or 42-bit, (11 hex characters).
28-bits supports the configuration memory space of an single interface subsystem
42-bits supports the full configuration memory space

ES

Data is 32-bit, (8 hex characters).

For reads, put 0x0 for the data
For verify put the expected data value

1.7 73

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

Examples

Writes
00005cO 76543210
w 0000014 00004064

=

Reads
r 00005cO 00OOOOOO
r 0000014 0000000

Verify
v 00005cO0 76543210
v 0000014 00004064

Wait for 50 cycles
d 0000000 00000032

Address Width

The address width varies according to the requirements of the file:

- When addressing an individual subsystem, only the lower 28 bits of the address field are used. The higher 14
bits are derived from the subsystem name.

- When addressing the full configuration memory space (interface subsystem name is set to full), 42 bits of the
address space are required. In this mode, the FCU confirms that bits [41:34] of the address field are set to

8'h20, which aligns with the 2D NoC global memory map plus control and status register (CSR) memory area.
In this mode, the one configuration file can address multiple interface subsystems. See the Speedster7t

Network on Chip User Guide (UG089)* for more details.

Parallel Configuration

The fcu.configure() taskis defined as a SystemVerilog automatic task allowing it to be re-entrant and run in
parallel. Therefore, it is possible to program multiple interface subsystems in parallel usinga fork - join
construct. Refer to the reference design testbench for examples of this parallel programming.

SystemVerilog Interfaces

The following SystemVerilog interfaces are defined, and are used for DCI assignments.

(@ Note

The following interface is only available in the simulation environment. For code that must be synthesized,
define custom SystemVerilog interfaces, or use one of the interfaces predefined within the reference
designs.

4 https://www.achronix.com/documentation/speedster7t-2d-network-chip-user-guide-ug089

1.7 4

www.achronix.com

https://www.achronix.com/documentation/speedster7t-2d-network-chip-user-guide-ug089
http://www.achronix.com
https://www.achronix.com/documentation/speedster7t-2d-network-chip-user-guide-ug089

uGorz2

Simulation User Guide

interface t_ACX_AXI4
#(DATA_WIDTH = 0,

ADDR_WIDTH = 0,
LEN_WIDTH = 0);
logic
logic
logic

logic [ADDR_WIDTH -1:0]
logic [LEN_WIDTH -1:0]
logic [8 -1:0]

logic [4 -1:0]

logic [2 -1:0]

logic

logic [3 -1:0]

logic [3 -1:0]

logic [3:0]

logic [2:0]

logic

logic

logic [DATA_WIDTH -1:0]
logic [(DATA_WIDTH/8) -1:0]
logic

logic

logic [DATA_WIDTH -1:0]
logic

logic [2 -1:0]

logic

logic [8 -1:0]

logic [ADDR_WIDTH -1:0]
logic [LEN_WIDTH -1:0]
logic [8 -1:0]

logic [4 -1:0]

logic [2 -1:0]
logic

logic [3 -1:0]
logic

logic [3 -1:0]
logic [3:0]
logic [2:0]
logic

logic

logic

logic

logic [2 -1:0]
logic [8 -1:0]

aclk; // Clock reference
awvalid; // AXI Interface
awready;
awaddr;
awlen;
awid;
awqos;
awburst;
awlock;
awsize;
awregion;
awcache;
awprot;
wvalid;
wready;
wdata;
wstrb;
wlast;
arready;
rdata;
rlast;
rresp;
rvalid;
rid;
araddr;
arlen;
arid;
arqgos;
arburst;
arlock;
arsize;
arvalid;
arregion;
arcache;
arprot;
aresetn;
rready;
bvalid;
bready;
bresp;
bid;

modport initiator (input awready, bresp, bvalid, bid, wready, arready, rdata, rlast,

rresp, rvalid, rid,

1.7

www.achronix.com

75

http://www.achronix.com

UG072 Simulation User Guide

output awaddr, awlen, awid, awqos, awburst, awlock, awsize,
awvalid, awregion,
bready, wdata, wlast, rready, wstrb, wvalid,
araddr, arlen, arid, arqos, arburst, arlock, arsize,
arvalid, arregion);

modport responder (output awready, bresp, bvalid, bid, wready, arready, rdata, rlast,
rresp, rvalid, rid,
input awaddr, awlen, awid, awqos, awburst, awlock, awsize,
awvalid, awregion,
bready, wdata, wlast, rready, wstrb, wvalid,
araddr, arlen, arid, arqos, arburst, arlock, arsize,
arvalid, arregion);

modport monitor (input awready, bresp, bvalid, bid, wready, arready, rdata, rlast,

rresp, rvalid, rid,

awaddr, awlen, awid, awqgos, awburst, awlock, awsize,
awvalid, awregion, awprot, awcache,

bready, rready, wstrb, wvalid, wdata, wlast,

araddr, arlen, arid, arqos, arburst, arlock, arsize,
arvalid, arregion, arprot, arcache);
endinterface : t_ACX_AXI4

Environment Variables

The locations of both ACE and the simulation package are controlled by two environment variables. For all reference
designs, these two variables must be set before simulating.

ACE_INSTALL_DIR

The environment variable ACE_INSTALL_DIR must be set to the directory location of the ace, or ace.exe
executable. This variable is used by both simulation and synthesis to locate the correct device library files.

ACX_DEVICE_INSTALL_DIR

The optional environment variable ACX_DEVICE_INSTALL_DIR is used to select the DSM files. It should be set to
the path, including the base directory, of the device files within the DSM package.

When installed in ACE integration mode, the following setting should be used (with the Speedster7t AC7t1500 FPGA
as an example):

ACX_DEVICE_INSTALL_DIR = $ACE_INSTALL_DIR/system/data/AC7t1500

When installed as standalone, the following setting should be used, (with the Speedster7t AC7t1500 FPGA as an
example):

1.7 76

www.achronix.com

http://www.achronix.com

UG072 Simulation User Guide

ACX_DEVICE_INSTALL_DIR = <location of standalone package>/system/data/AC7t1500

(@ Note

For simulation, it is only necessary to set the ACX_DEVICE_INSTALL_DIR variable if the DSM is not
installed in ACE integration mode. In all the supplied designs, the simulation makefiles define
ACX_DEVICE_INSTALL_DIR as shown for ACE integration mode. This definition takes precedence over
any local environment variable. If using a supplied simulation makefile, override the definition of
ACX_DEVICE_INSTALL_DIR inthe make flow invocation as follows (with the Speedster7t

AC7t1500 FPGA as an example):

> make ACX_DEVICE_INSTALL_DIR=<location of standalone package>/system/data/
AC7t1500

1.7 T

www.achronix.com

http://www.achronix.com

uGorz2

Simulation User Guide

Chapter 5 : Simulation User Guide Revision History

“

10

11

12

13

14

15

16

17

28 Aug 2016

31 Oct 2016

13 Nov 2016

27 Apr 2018

28 Jun 2019

24 Mar 2020

25 Jun 2024

20 Aug 2024

- Initial release.

- Updated document template to reflect confidentiality.

- Renamed and re-formatted the document to make it technology agnostic.

- Added command option for configuration memory readback during WGL

simulation for VCS and IES simulators.

- Updated for Speedster7t devices.
- Made the example design device/technology agnostic.

- Added the I/0 ring simulation package details.

- Added new section Simulation from within ACE (page 4)

- Changed simmodels file from technology to device specific
- Changed I/0 ring simulation package naming to DSM

- Corrected all ACE paths to be ACE_INSTALL_DIR

- Migrated Incisive simulator to Xcelium
- Added Xcelium support for integrated ACE flow step

1.7

www.achronix.com 8

http://www.achronix.com

	Overview
	Simulation Software Tool Flow
	Simulation Libraries
	Including Memory Initialization Files

	Simulation from within ACE
	Example Design
	Configuring the Simulation Tool Environment
	Configuring the Project Source Files
	Configuring the Simulation Options
	Configuring Simulation

	Running the Simulation Flow Steps
	Viewing the Simulation Outputs

	Simulation Outside of ACE
	General Project Setup
	General RTL Simulation Flow
	General Gate-Level Simulation Flow
	General Post-Route Simulation Flow
	Example Design Description
	Aldec Riviera Simulator Example
	RTL Simulation in Riviera
	Gate-Level Simulation in Riviera
	Post-Route Simulation in Riviera

	Cadence Xcelium Simulator Example
	RTL Simulation in Xcelium
	Gate-Level Simulation in Xcelium
	Post-Route Simulation in Xcelium

	Siemens QuestaSim Simulator Example
	RTL Simulation in QuestaSim
	Gate-Level Simulation in QuestaSim
	Post-Route Simulation in QuestaSim

	Synopsys VCS Simulator Example
	RTL Simulation in VCS
	Gate-Level Simulation in VCS
	Post-Route Simulation in VCS

	DSM Simulation Package
	Device Simulation Model
	Description
	Selecting the Required DSM
	Version Control
	Example Design
	Chip Status Output
	Bind Macros
	Direct-Connect Interfaces
	Clock Frequencies
	Configuration
	SystemVerilog Interfaces

	Environment Variables
	ACE_INSTALL_DIR
	ACX_DEVICE_INSTALL_DIR

	Simulation User Guide Revision History

