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Chapter - 1: Introduction
This guide introduces the concept of the network hierarchy feature of the Speedster®7t family of FPGAs.

The Speedster7t family of FPGAs has a network hierarchy that enables extremely high-speed data flow between 
the FPGA core and the interfaces around the periphery as well as between logic within the FPGA itself. This on-
chip network hierarchy supports a cross-sectional bidirectional bandwidth exceeding 20 Tbps. It supports a 
multitude of interface protocols including GDDR6, DDR4/5, 400G Ethernet, and PCI Express Gen5 data streams 
while greatly simplifying access to memory and high-speed protocols. The Achronix two-dimensional network on 
chip (2D NoC) provides for read/write transactions throughout the device as well as specialized support for 400G 
Ethernet streams in selected columns.

The 2D NoC extends both vertically and horizontally over the FPGA fabric until it reaches the peripheral portion 
of the 2D NoC. This structure provides an easy-to-use, high-bandwidth method to communicate between various 
initiators and responders on a Speedster7t FPGA, including specialized connections between the Ethernet 
subsystem and 2D NoC access points (NAPs) on select 2D NoC columns in the FPGA fabric. In addition, the 2D 
NoC provides a connection from the FPGA fabric and interface subsystems to the FPGA configuration unit 
(FCU). The FCU receives bitstreams and is used to configure the FPGA fabric as well as the various interface 
subsystems on the device. The 2D NoC also provides read and write access to the control and status register 
(CSR) space. The CSR space includes control registers and status registers for the interface subsystems.

The features of the 2D NoC described in this user guide generally pertain to the entire Speedster7t family of 
FPGAs. To simplify understanding specific connections and features of the 2D NoC, this user guide focuses on 
the 2D NoC as implemented in the Speedster7t AC7t1500 FPGA.

Initiator Endpoints
Up to 80 2D NoC access point (NAP) responders distributed throughout the FPGA core responding to the 
user-implemented initiator logic endpoint

All PCI Express Interfaces

FPGA configuration unit (FCU)

Responder Endpoints
Up to 80 NAP initiators distributed throughout the FPGA core communicating with the user-implemented 
responder logic endpoint

Up to 16x GDDR6 memory interfaces

DDR4/5 controller

All PCI Express Interfaces

All control and status register (CSR) interfaces of all subsystem cores

FCU (enables configuring of FPGA and interface subsystems)

Packet Endpoints
Up to 80 vertical and 80 horizontal NAP packet interfaces distributed throughout the FPGA core for fabric-
to-fabric transactions

Up to 32 of the 80 vertical NAPs can send and receive data to/from the Ethernet subsystems, each 
Ethernet controller connects to two dedicated 2D NoC columns

Up to two Ethernet subsystems, supporting a mix of up to 4× 400 Gbps Ethernet or 16× 100 Gbps 
Ethernet
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2D NoC Features
While the main purpose of the 2D NoC is to provide high-bandwidth connections between various endpoints on a 
Speedster7t device, it also includes features for ease-of-use and flexibility. The NAPs that provide the 2D NoC-to-
FPGA interface can operate in several different modes:

256-bit advanced extensible Interface (AXI) responder

256-bit AXI initiator

Ethernet packet

NAP-to-NAP data streaming

These different modes provide a built-in means of communication between endpoints without requiring the 
design of the needed logic. The 2D NoC also handles flow control internally such that data is never dropped. 
Additionally, each NAP has its own address translation table providing both flexibility in addressing, as well as 
security through the ability to block access to specific memory regions on a per-NAP basis.

The following figure illustrates the 2D NoC surrounded by high-speed interfaces on a Speedster7t AC7t1500 
FPGA, and the rows and columns of the 2D NoC over the FPGA fabric.
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Figure 1: Speedcore7t 2D NoC Showing Initiator and Responder Endpoints
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Chapter - 2: Speedster7t Peripheral 2D NoC
The Achronix Speedster7t FPGA 2D NoC consists of two main parts:

The peripheral ring around the fabric that connects to all the IP interfaces.

The rows and columns that run over the top of the FPGA fabric.

This section describes the peripheral ring of the 2D NoC, along with its connections and features.

Peripheral 2D NoC Features
The peripheral portion of the 2D NoC forms a ring around the FPGA fabric, but operates entirely without 
consuming any FPGA resources. This ring provides a 256-bit wide primary data-path that runs at 2 GHz, 
implemented with six full crossbar switches allowing access to all endpoints connected to the 2D NoC. In 
addition, It has built-in clock domain crossing logic to handle the different endpoint frequencies, built-in address 
decoding using a global address map, and built-in arbitration to keep traffic moving at high speeds.

While the peripheral portion of the 2D NoC can be used without configuring the fabric, this portion also connects 
directly to the rows and columns of the 2D NoC that run over the FPGA fabric, providing access to initiator and 
responder logic in the FPGA. Additionally, the peripheral ring of the 2D NoC connects to the FPGA configuration 
unit (FCU), allowing the 2D NoC to aid in configuration of the FPGA fabric or the various interfaces. To see how 
the peripheral ring connects to the rows and columns, see the figure in the chapter Speedster7t 2D NoC Rows 

. The following figure shows the peripheral portion of the 2D NoC as it surrounds and Columns (see page 16)
the FPGA fabric and provides high-bandwidth connections to the memory and networking interfaces.
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Figure 2: Speedster7t 2D NoC Peripheral Ring

Modes of Operation
The 2D NoC supports AXI4 initiator/responder interfaces with read and write transactions. As implied, initiators 
initiate commands and responders respond to commands by either writing the provided data or sending the 
requested read data. This mechanism provides easy-to-use connections between all of the interfaces without 
needing to design complicated logic to communicate with each interface separately. As mentioned above, this 
mode of operation provides for a 256-bit main data path operating at up to 2 GHz.

Additionally, the 2D NoC connects to the advanced peripheral bus (APB) interface used to configure and collect 
status from all of the interface subsystem control and status registers (CSRs) in the device. While this interface 
operates at a lower frequency, it is expected to only be used in limited scenarios. If using the PCIe interface (e.g., 
to program CSRs), the 2D NoC handles all of the translation from AXI4 transactions to the APB.
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Connections to 2D NoC Peripheral Ring
The 2D NoC allows designers to easily communicate between the various device interfaces, as well as 
connecting the fabric to any of the interfaces on the device, all without using logic or routing resources in the 
FPGA fabric. The peripheral portion of the 2D NoC connects endpoints using an initiator/responder model, where 
the initiator initiates transactions and the responder responds to transactions. The peripheral portion of the 2D 
NoC can connect the following endpoints:

GDDR6

DDR4

PCIe

Rows and columns of the 2D NoC to fabric logic

FPGA configuration unit (FCU)

CSRs in the entire FPGA

FPGA Fabric Logic to GDDR6 or DDR4 Subsystems
Initiator logic in the FPGA fabric can initiate transactions to any of the GDDR6 channels or the DDR4 interface. 
The user logic sends a transaction to the NAP connected to a row of the 2D NoC. This transaction then travels 
east or west on the row until it reaches the peripheral portion of the 2D NoC, and then to the destination GDDR6 
or DDR4 channel.

PCIe to GDDR6 or DDR4 Subsytems
Either PCIe endpoint can initiate transactions to either GDDR6 or DDR4 directly using the 2D NoC. In this case, 
the PCIe endpoint is the initiator with either the GDDR6 or DDR4 as the responder. The 2D NoC is able to 
provide enough bandwidth to sustain PCIe Gen 5 traffic connecting to two channels of GDDR6. This high-
bandwidth connection is achieved without consuming any FPGA fabric resources. It is only necessary to enable 
PCIe, GDDR6, and/or DDR4 to send transactions on the 2D NoC.

PCIe Endpoint to PCIe Endpoint
Because the Speedster7t AC7t1500 FPGA contains two independent PCIe controllers, each PCIe controller can 
send transactions to the other via the 2D NoC. Similar to connections with GDDR6 and DDR4, this high-
bandwidth connection is achieved without consuming any FPGA fabric resources — it is only necessary to 
enable both PCIe controllers to send transactions between them.

PCIe Endpoint to FCU
The PCIe endpoint can also connect directly to the FCU via the 2D NoC without using FPGA fabric resources. 
This feature allows the PCIe endpoint to send a bitstream directly to the FCU, which then configures the FPGA 
fabric with the bitstream.
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PCIe Endpoint to/from FPGA Fabric Logic
The PCIe endpoint can connect to logic in the FPGA fabric through the 2D NoC. In this case, the PCIe endpoint 
can be the initiator or responder, and similarly the logic in the FPGA can be either the initiator or responder. If the 
PCIe endpoint is initiating transactions, the peripheral portion of the 2D NoC sends transactions down the 
columns of the 2D NoC to reach NAPs in the fabric. These NAPs send the transaction to the logic in the fabric 
and then send the responses back onto the 2D NoC. If the logic in the FPGA fabric is acting as the initiator, it can 
initiate transactions to the NAP on a row of the 2D NoC, which sends the transaction to the peripheral portion 
and then to the PCIe endpoint.

FCU to All Endpoints
The FCU can act as an initiator to all other endpoints of the 2D NoC, allowing the FCU to program the entire 
FPGA, including configuring the interface subsystems. For example, using the 2D NoC, the FCU can read and 
write the control and status register (CSR) space in the entire FPGA and can even be used to load GDDR6 or 
DDR4 memory. For details on how the FCU performs these transactions, refer to the appropriate interface user 
guide.

For additional details on all the connectivity available in the 2D NoC, refer to the chapter, Speedster7t 2D NoC 
.Connectivity (see page 26)

Additional Features
The 2D NoC provides several features that make it easy to use without sacrificing on area, congestion, or design 
time.

Addressing
The 2D NoC provides address decoding using a global address map to ensure transactions are sent to their 
intended destination. Additionally, the 2D NoC supports address translation for flexibility and added security. For 
more information on the address map and address translation features, see the chapter, Speedster7t 2D NoC 

.Address Mapping (see page 36)

Clock Domain Crossing
To make logic design easier, the 2D NoC handles all clock domain crossing internally. This capability significantly 
simplifies user designs while providing a way to easily transfer data operating at lower frequencies compared to 
the 2D NoC. Specifically, on the peripheral portion of the 2D NoC, this handles the clock crossing needed 
between the 2D NoC and PCIe, GDDR6, DDR4, and FCU.

Transaction Arbitration
Transaction arbitration is also handled internally by the 2D NoC. This capability keeps data moving through the 
2D NoC without causing major congestion. For the peripheral portion of the 2D NoC, a FIFO-based arbitration 
scheme is used, meaning transactions are handled on a first-come, first-served basis. If multiple transactions 
arrive on the same 2D NoC clock cycle, a least-recently-serviced policy is used to order the transactions. This 
scheme guarantees that no endpoint is starved, and all transactions complete. The arbitration scheme in the 
peripheral portion of the 2D NoC is not configurable and differs somewhat from the arbitration scheme used in 
the rows and columns of the 2D NoC. For more information on transaction arbitration in the rows and columns, 
refer to the Transaction Arbitration section in the chapter, Speedster7t 2D NoC Rows and Columns (see page 

.18)
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Functional Prior to Configuration
Additionally, the peripheral portion of the 2D NoC is operational without needing to first configure the FPGA 
fabric. This feature allows a host to use the PCIe endpoint to program the FPGA fabric, and further, this 
capability also makes possible partial reconfiguration through the peripheral portion of the 2D NoC.
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Chapter - 3: Speedster7t 2D NoC Rows and Columns
The rows and columns of the 2D NoC are placed over the FPGA fabric and do not break the connectivity within 
the fabric. This structure allows the logic in the FPGA fabric to connect to the 2D NoC through NoC access points 
(NAPs). The rows and columns are connected to the peripheral portion of the 2D NoC, which communicates with 
the interface subsystems such as GDDR6, PCIe, and DDR4. The columns also have direct connections to the 
Ethernet MAC, and thus connect easily to user logic in the FPGA fabric.

Structure and Performance
The 2D NoC is placed in rows and columns at regular intervals over the FPGA fabric. The user logic connects to 
the 2D NoC by way of NAPs and does not interfere with the connectivity of other logic within the fabric. Each row 
and column has a primary 256-bit data path and additional control signals that operate at 2 GHz, delivering 512 
Gbps of bidirectional bandwidth. While there are no direct connections between the rows and the columns, both 
connect to the peripheral ring of the 2D NoC which allows for connections between points in the fabric. Initiator 
logic in the FPGA fabric connects to NAPs on the horizontal rows, and responder logic in the FPGA fabric 
connects to NAPs on the vertical columns of the 2D NoC. The following figure shows an example of the 2D NoC 
as constructed in the Speedster7t AC7t1500 FPGA. As shown, there are eight rows and ten columns, providing a 
total of 80 NAPs on the horizontal rows and 80 NAPs on the vertical columns to which the fabric logic can 
connect. The result is 10 Tbps of bidirectional bandwidth going north-south and 8 Tbps of bidirectional bandwidth 
going east-west.
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1.  

2.  

3.  

Figure 3: 2D NoC Rows and Columns

Modes of Operation
There are three main modes of operation in the rows and columns of the 2D NoC:

Industry-standard AXI-4 interface protocol is used to communicate from the fabric to most of the interface 
subsystems connected at the periphery of the 2D NoC, as well as within the fabric.

The internal fabric can connect to points on the same 2D NoC row or column using data streaming.

The Ethernet interface is connected via specific columns using Ethernet packet transfers.

These three modes are described in more detail in the following sections.
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AXI Mode
AXI mode operates using initiator and responder logic. Initiator logic in the FPGA fabric can initiate commands to 
responder NAPs on 2D NoC rows, which send the commands to responder endpoints such as GDDR6, DDR4, 
PCIe, and the FCU. Similarly, responder user logic in the FPGA fabric can respond to transactions from an 
initiator NAP on a column of the 2D NoC sent by the PCIe or FCU endpoints. Additionally, this mode is used to 
send transactions from FPGA fabric user logic to other endpoints in the FPGA fabric that might not be located on 
the same row or column of the 2D NoC. Generally, AXI mode follows the AXI-4 standard, but there is a burst 
length limit of 16 for a single transaction. For more details on AXI transactions, see the AMBA AXI Protocol 

.Specification

Data Streaming
User logic in the FPGA can communicate with another logic block in the fabric using data streaming on a single 
row or column of the 2D NoC. In this case, intra-FPGA transfers act like a distributed FIFO. The start point and 
endpoint must be on the same row or same column of the 2D NoC, using a simple signaling protocol. This 
protocol uses a "valid" signal to indicate valid data being sent for the transfer and a "ready" signal to accept the 
data or signal back pressure. The start point sends a destination ID to indicate which NAP on the column or row 
receives data, and the endpoint receives a source ID to indicate which NAP on the column or row transmitted the 
data. The receiving NAP does not send back any acknowledgement to the transaction, it simply accepts the data, 
and knows which NAP sent the data. Optionally, a start-of-packet and end-of-packet signal can be used as well. 
Data streaming uses all 288 bits of the data bus for rows and 293 bits of the data bus for columns.

Example timing diagrams of data streaming transactions follow, showing how transfers are captured when both 
the associated  and  signals are high.ready valid

Figure 4: Data Streaming Timing Diagram With Valid Asserted First

https://developer.arm.com/docs/ihi0022/g
https://developer.arm.com/docs/ihi0022/g
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Figure 5: Data Streaming Timing Diagram With Ready Asserted First

In data streaming mode, any point in the fabric can initiate the transfer, but the two points  reside on the must
same row or same column of the 2D NoC. For more details on data streaming, see the sections, Speedster7t 2D 

 or .NoC Access Point (see page 20) Speedster7t 2D NoC Connectivity (see page 26)

Ethernet Packet Transfers
The Ethernet MAC interface is connected to specific columns in the 2D NoC. The user logic in the fabric can 
connect to NAPs in these columns to communicate with the Ethernet MAC using Ethernet packets. This mode is 
very similar to the data streaming mode previously described. For more details on Ethernet packet transfers on 
the 2D NoC, refer to the section, .Speedster7t 2D NoC Connectivity (see page 26)

Additional Features
Clock Domain Crossing
The 2D NoC handles clock domain crossing for any endpoints on the 2D NoC. This feature allows user logic 
operating at a lower frequency to easily connect to the 2D NoC without the need to design resource-intensive 
and complicated clock domain crossing logic. Simply connect the slower fabric clock to the NAP, and the rest of 
the clock crossing logic is handled by the 2D NoC.

Transaction Arbitration
The 2D NoC also handles transaction arbitration internally, and interleaves traffic from AXI transactions, Ethernet 
packets, and/or data streaming. This arbitration not only keeps traffic moving and prevents backups, but also 
keeps the 2D NoC operating at its peak capacity. The rows and columns use a configurable, round-robin 
arbitration scheme where the arbitration schedule can be configured at each NAP. The schedule values are 
passed via parameters when the NAP is instantiated and remain static after configuration of the fabric. For the 
NAPs on columns, there is a parameter for the north-to-south direction as well as the south-to-north direction. 
Similarly, the rows have a parameter for the east-to-west direction as well as west-to-east.
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Each arbitration parameter consists of a 32-bit value used to initialize the arbitration schedule mechanism. Bit 0 
of the arbitration schedule vector is used to determine if the local NAP transaction entering the 2D NoC wins 
arbitration when there is competing traffic from the upstream NAP on the row or column. If bit 0 has a value of , 1
the local traffic entering the 2D NoC wins, while if , the upstream transaction on the row or column wins. After 0
each 2D NoC clock cycle where both the local transaction and the upstream transaction are competing for 
access, the value in the schedule register rotates to the left. For example, a value of  means 32'hAAAA_AAAA
that the local NAP transaction has high priority on every second 2D NoC cycle.

ACE chooses default values for the arbitration schedule to create fairness on the rows and columns, but those 
values can be overridden if a particular NAP needs to have higher priority in a design. It is recommended that the 
arbitration schedule values are not overridden, as the default values set fairness for all NAPs on a row or column. 
The default value for each NAP is based on the number of instantiated NAPs along a row or column, and the 
location of the particular NAP. The formula used for the values on each row or column that instantiates N number 
of NAPs is 1/N for the last NAP in that direction, 1/(N-1) to next upstream NAP, and so on until the first 
instantiated NAP in the row or column. For example, if three NAPs are on a row, the westernmost NAP has 
priority every third cycle, the next upstream NAP has priority every second cycle, and the easternmost NAP 
always has priority as there are no further competing NAPs in the east-to-west direction. Both ACE and the 
simulation environment enforce the default arbitration value unless explicitly overridden by a user value. For 
more information on the arbitration schedules, refer to the "Speedster7t Network on Chip Primitives" chapter in 
the .  (UG086)Speedster7t Component Library User Guide

https://www.achronix.com/documentation/speedster7t-component-library-user-guide-ug086
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Chapter - 4: Speedster7t 2D NoC Access Point

Note

Achronix is aware of the use of historical terms within this document with regards to initiator and 
responder logic. Achronix is working hard to remove all such references from within its code base and 
documentation.

The NoC access point (NAP) is the connection point from user logic in the fabric to the 2D NoC. NAPs are 
instantiated in user logic to connect to the rows and columns of the 2D NoC. Depending on the function, the 
appropriate NAP instance is instantiated in the design. The following figure shows an example of how the NAPs 
connect to the 2D NoC.

Figure 6: NoC Access Points in FPGA Fabric
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AXI Responder NAP
The macro presents a 256-bit AXI responder to initiator user logic in the fabric and  ACX_NAP_AXI_SLAVE 
connects to the rows of the 2D NoC. The resulting connection uses standard AXI4 protocol for read and write 
transactions and connects the user logic to any peripherals on the 2D NoC, including the interface subsystems, 
as well as other user logic in the FPGA fabric connected through a NAP. The input clock drives the user logic in 
the FPGA fabric. The 2D NoC uses this clock for any clock-crossing logic. The following is a block diagram of the 
AXI responder NAP.

Figure 7: AXI Responder NAP Block Diagram

For details on port names and instantiating the component, see the "Speedster7t Network on Chip Primitives" 
chapter in the .  (UG086)Speedster7t Component Library User Guide

https://www.achronix.com/documentation/speedster7t-component-library-user-guide-ug086
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AXI Initiator NAP
The  macro presents a 256-bit AXI initiator to responder user logic in the fabric and ACX_NAP_AXI_MASTER
connects to the columns of the 2D NoC. The resulting connection uses standard AXI4 protocol for read and write 
transactions and connects the user logic to peripherals on the 2D NoC, including the interface subsystems, as 
well as other user logic in the FPGA fabric connected through a NAP. The input clock drives the user logic in the 
FPGA fabric. The 2D NoC uses this clock for any clock crossing logic. The following is a block diagram of the AXI 
initiator NAP.

Figure 8: AXI Initiator NAP Block Diagram

For details on port names and instantiating the component, see the "Speedster7t Network on Chip Primitives" 
chapter in the .  (UG086)Speedster7t Component Library User Guide

https://www.achronix.com/documentation/speedster7t-component-library-user-guide-ug086
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Horizontal NAP
The  macro is used for data streaming along the rows of the 2D NoC. The ACX_NAP_HORIZONTAL

 macro presents a 288-bit datapath to another  instance on the ACX_NAP_HORIZONTAL ACX_NAP_HORIZONTAL
same row of the 2D NoC using transactions similar to a FIFO. User logic presents data to the interface along with 
a destination ID. The data and other fields are captured and sent to the destination NAP as indicated by tx_dest

, which then is sent to the FPGA logic using the destination NAP receiver interface. The input clock drives [3:0]
the user logic in the FPGA fabric. The 2D NoC uses this clock for any clock crossing logic. The following is a 
block diagram of the horizontal NAP.

Figure 9: Horizontal NAP Block Diagram

For details on port names and instantiating the component, see the "Speedster7t Network on Chip Primitives" 
chapter in the .  (UG086)Speedster7t Component Library User Guide

https://www.achronix.com/documentation/speedster7t-component-library-user-guide-ug086
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Vertical NAP
The  macro is used for data streaming along the columns of the 2D NoC. The ACX_NAP_VERTICAL

 macro presents a 293-bit datapath to another  instance on the same ACX_NAP_VERTICAL ACX_NAP_VERTICAL
column of the 2D NoC using transactions similar to a FIFO. User logic presents data to the interface along with a 
destination ID. The data and other fields are captured and sent to the destination NAP as indicated by tx_dest

, which then is sent to the FPGA logic using the destination NAP receiver interface. The input clock drives [3:0]
the user logic in the FPGA fabric. The 2D NoC uses this clock for any clock crossing logic. The following is a 
block diagram of the vertical NAP.

Figure 10: Vertical NAP Block Diagram

For details on port names and instantiating the component, see the "Speedster7t Network on Chip Primitives" 
chapter in the .  (UG086)Speedster7t Component Library User Guide

https://www.achronix.com/documentation/speedster7t-component-library-user-guide-ug086
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Ethernet NAP
The  macro is used for data streaming of Ethernet packets along the columns of the 2D ACX_NAP_ETHERNET
NoC. The  macro presents a 293-bit datapath to the user logic. The  ACX_NAP_ETHERNET ACX_NAP_ETHERNET
is configured via parameters to connect to the Ethernet Interface Unit (EIU) at the top of the column. Ethernet 
packets are input and output to the  using the streaming interface. For packet transmission, ACX_NAP_ETHERNET
the destination ID must be set to . In addition only certain columns connect to the EIUs in a device.4'hf

Note

Although it is possible to directly instantiate the , there are a number of additional ACX_NAP_ETHERNET
design constraints, specific to Ethernet, and the integration between the NAP, EIU and Ethernet 
subsystem. It is, therefore, recommended that the  wrapper be instantiated. This ACX_ETHERNET_NODE
wrapper is freely available in any Achronix reference or demonstration design that includes Ethernet. 
The node directly instantiates the .ACX_NAP_ETHERNET

The input clock drives the user logic in the FPGA fabric. The 2D NoC uses this clock for any clock crossing logic. 
The following is a block diagram of the Ethernet NAP.

Figure 11: Ethernet NAP Block Diagram

For details on port names and instantiating the component, see the "Speedster7t Network on Chip Primitives" 
chapter in the . For details of the Ethernet subsystem, and   (UG086)Speedster7t Component Library User Guide
how the  is used to send and receive Ethernet traffic, refer to theACX_NAP_ETHERNET  Speedster7t Ethernet 

. (UG097)User Guide

https://www.achronix.com/documentation/speedster7t-component-library-user-guide-ug086
https://www.achronix.com/documentation/speedster7t-ethernet-user-guide-ug097
https://www.achronix.com/documentation/speedster7t-ethernet-user-guide-ug097
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Chapter - 5: Speedster7t 2D NoC Connectivity
This section describes how the 2D NoC connects the various endpoints together, how traffic moves, and the role 
of the designer in optimizing a design for low congestion, low latency, and high performance. The 2D NoC 
connects interface-only endpoints, interface to fabric, fabric to fabric, and Ethernet to fabric.

Interface-only Connections
The 2D NoC connects certain interface endpoints without using the FPGA fabric. Interface-only connections 
make use of only the peripheral portion of the 2D NoC which connects PCIe to GDDR6, DDR4, and FCU. 
Additionally, the FCU uses the 2D NoC to access the CSR space of all interface subsystems including PCIe, 
GDDR6, DDR4, and Ethernet. The connections between the PCIe, FCU, GDDR6, and DDR4 use the AXI4 
protocol to send transactions. GDDR6 and DDR4 endpoints can only act as responders, while the PCIe and FCU 
can act as both initiator and responder. The following figure shows an example of the PCIe endpoint sending 
read or write transactions to a GDDR6 channel.

Figure 12: PCIe-to-GDDR6 Transactions



Speedster7t 2D Network on Chip User Guide (UG089)

Preliminary Data 27

Because these connections do not consume any FPGA fabric resources, there is no impact on routing, area, or 
timing of the logic in the FPGA. The 2D NoC handles any clock domain crossing internally, as well as flow control 
and transaction arbitration. However, the traffic flow to expected endpoints must be considered so as to optimize 
for latency and congestion on the peripheral portion of the 2D NoC. For example, when sending transactions 
from the PCIe endpoint to several channels of GDDR6, choosing channels on both the east and west side of the 
FPGA can spread out the traffic rather than sending all traffic down one side, thus reducing congestion on the 2D 
NoC.

Interface-to-Fabric Connections
Interface subsystems can connect to initiator or responder logic in the FPGA fabric. The appropriate 

or macro must be instantiated depending on the type of logic in ACX_NAP_AXI_SLAVE ACX_NAP_AXI_MASTER 
the fabric. Standard AXI4 protocol is all that is needed to communicate with the NAP through read and write 
transactions, which in turn connects the user logic through the 2D NoC to the various interface subsystems. 
Initiator logic in the fabric can send transactions to the PCIe, GDDR6, DDR4, FCU, or CSR space. Additionally, 
the PCIe and FCU can talk to responder logic in the FPGA fabric. The following figure shows an example of the 
PCIe endpoint sending transactions to four NAPs with connected responder logic in the FPGA fabric. The 
transactions go from the PCIe, through the 2D NoC, and into the FPGA fabric via NAPs. Responses travel the 
same path back to the PCIe endpoint.

Figure 13: PCIe-to-FPGA Fabric Transactions
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The 2D NoC handles any clock crossing logic and transaction arbitration internally, eliminating the need to 
design this logic in the FPGA fabric. Placement of the NAPs does need to be considered in the fabric with 
respect to the interface subsystems if latency and congestion are concerns. For example, when sending 
transactions from the PCIe endpoint to a NAP in the fabric, there is more latency to reach a NAP that is 
physically further away from the PCIe endpoint. Similarly, if a NAP located on the west side of the device sends a 
transaction to a GDDR6 channel on the east side of the device, the latency is longer than if a NAP on the east 
side of the device sends the transaction. To help with placement of initiator logic using NAPs that initiate 
transactions, it is important for a designer to know the direction a transaction takes when traversing the 2D NoC 
row to the peripheral ring.

The following table lists the direction a transaction takes on the row to arrive at the various interface targets. The 
direction is based solely on the target destination, and not on the location of the initiating NAP.

Table 1: Direction of Transaction Based on Target

Interface Target Direction on Row

GDDR6_0 west

GDDR6_1 west

GDDR6_2 west

GDDR6_3 west

GDDR6_4 east

GDDR6_5 east

GDDR6_6 east

GDDR6_7 east

DDR4 east

PCIe ×16 east

PCIe ×8 west

CSR space west

Additionally, if logic and multiple NAPs are placed along a single column or row in the FPGA, the traffic is 
concentrated on that one row or column. To reduce congestion, consider expected traffic patterns in the design 
and choose NAP locations that spread the transaction traffic across several rows or columns when possible.

Ethernet-to-Fabric Connections
The Ethernet subsystem connects directly to specific columns on the 2D NoC and can communicate to FPGA 
fabric logic connected to vertical NAPs along those specific columns using Ethernet packets. Each Ethernet 
subsystem has two dedicated columns and can send transactions to NAPs placed only on those two specific 
columns. The following table lists the specific columns connected to the Ethernet subsystems.
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Table 2: 2D NoC Columns for Ethernet Subsystems

Ethernet Subsystem location Ethernet Subsystem 0 (West) Ethernet Subsystem 1 (East)

2D NoC Column 1 1 4

2D NoC Column 2 2 5

Table Notes

2D NoC Columns are numbered 1 at the westernmost column and increment going east.

There are a few modes available, depending on how the Ethernet packets are to be handled in the FPGA fabric. 
For interfaces using 100GE or slower, the Ethernet sends 256-bit packets down the columns directly to NAPs. 
For interfaces running 200GE or 400GE, there are two modes to choose from: packet mode or quad-segmented 
mode.

Packet Mode
The 2D NoC rearranges the 1024-bit data bus into either four (400GE) or two (200GE) narrower data paths, 
funneling a separate packet to each of the four (or two) NAPs and splitting the full 1024-bit data bus into either 
four 256-bit (32-byte) or two 256-bit (32-byte) data paths. This solution results in less congestion in the fabric 
because the user logic can reside in multiple separate engines distributed down the 2D NoC columns rather than 
a single large engine immediately next to the Ethernet subsystem. This mode also reduces the needed frequency 
in the FPGA fabric design and makes the design easier because each NAP can have its own individual packet 
processing engine.

Packet mode can result in larger latency as each packet can take more cycles to transfer. Importantly, packets 
can arrive out of order, with the 2D NoC sending a sequence number along with each packet. The user logic is 
responsible for reordering the packets, if necessary, in order to retrieve the original data sequence. The following 
figure shows how the Ethernet subsystem data bus is rearranged into four separate 256-bit wide data buses for 
400G mode. Each packet can take multiple cycles to complete. In 200G mode, the subsystem data bus is 
rearranged into two separate 256-bit data buses. However, the same principles of a sequence number, and 
additional latency apply.

Figure 14: Data Bus Rearrangement for Packet Mode
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The four packets shown above are sent to four separate NAPs distributed down the designated 2D NoC 
columns. Each NAP can communicate with an individual packet processing engine. This arrangement allows 
each NAP and processing engine to be run at a lower frequency than that required of a single processing engine 
with the full 1024-bit bus, thus simplifying the system design. For example, a single processing engine for a 
400GE solution would require a 1024-bit bus running at approximately 728 MHz, whereas the packet mode for 
400GE uses four NAPs and requires four 256-bit buses running at 507 MHz. The 2D NoC automatically handles 
the load balancing, sending the next available packet to the next free NAP. For more details on Ethernet packet 
mode, refer to the .  (UG097)Speedster7t Ethernet User Guide

In the following figure, the four NAPs are distributed in different locations along two columns. The specific 
placement of the NAPs is a design choice. It is equally possible to have all four NAPs located on a single column, 
or grouped closer together.

Figure 15: Ethernet Packet Mode on the 2D NoC

https://www.achronix.com/documentation/speedster7t-ethernet-user-guide-ug097
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Quad-Segmented Mode
In quad-segmented mode, the 2D NoC sends a 1024-bit bus that is segmented across four NAPs. This applies to 
both 200G and 400G modes, quad mode always uses four NAPs. This mode makes the user logic a little more 
complex as the design logically is one large packet processing engine distributed across the four NAP locations. 
This mode does guarantee in-order packet arrival, and larger packets arrive with less latency than in packet 
mode as previously described. Because the bus is segmented, packets can potentially start at any of the four 
NAPs, and up to two packets can arrive in a single fabric clock cycle.

Similar to the previously described packet mode, the FPGA logic can be spread across the space of four NAPs 
on the designated columns, rather than having to be placed immediately next to the Ethernet subsystem. This 
arrangement helps ease congestion, and because the design can be split across four NAPs, the frequency can 
be reduced similar to the packet mode. For example, a single processing engine for a 400GE solution would 
require a 1024-bit bus running at approximately 728 MHz, whereas the quad-segmented mode for either 400G or 
200G uses four NAPs and requires four 256-bit buses running at 507 MHz. The following figure shows how the 
packets are arranged and segmented for the quad-segmented mode.

Figure 16: Packet Segmentation for Quad-Segmented Mode

Each packet is distributed across four NAPs located on the designated columns of the 2D NoC. Each 32-byte 
segment is dedicated to a specific NAP in the group of four. The packet processing engine should be located 
close to the four NAPs. The following figure shows the four NAPs distributed in two columns, but placed close 
together. The specific placement of the NAPs is a design choice. It is equally possible to have all four NAPs 
located on a single column, or grouped farther apart.
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Figure 17: Quad-Segmented Mode on the 2D NoC

For full details on the Ethernet modes and the Ethernet MAC, refer to the  Speedster7t Ethernet User Guide
.(UG097)

Fabric-to-Fabric Connections
While logic in the FPGA fabric can communicate to other logic in the fabric in a traditional manner using 
conventional routing resources in the FPGA, the 2D NoC enables designs to communicate between points within 
the FPGA fabric on a wide, high-speed bus without using the fabric routing resources. Depending on where the 
endpoints are located, and the style of transfer desired, there are two methods to using the 2D NoC for fabric-to-
fabric communication:

AXI transactions

Data streaming

https://www.achronix.com/documentation/speedster7t-ethernet-user-guide-ug097
https://www.achronix.com/documentation/speedster7t-ethernet-user-guide-ug097
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AXI Transactions
Two points in the FPGA can communicate with each other via the 2D NoC through AXI NAPs. In this case, 
initiator logic using an AXI responder NAP on a row can send transactions east or west to the peripheral portion 
of the 2D NoC, and then down a column to an AXI initiator NAP that connects to responder logic in the fabric. As 
previously mentioned, the AXI NAPs send read and write commands using the AXI4 standard. This method of 
connecting FPGA points is not optimized for latency, but can easily transfer read and write data. The following 
figure shows an example of connecting two points via the 2D NoC using AXI mode.

Figure 18: AXI Mode Fabric-to-Fabric Transaction

Data Streaming
Two points within the FPGA fabric along the same row or the same column can communicate via data streaming. 
These transfers behave like pushing or popping data to or from a FIFO. The transactions use a "ready" signal to 
indicate that the logic or the NAP can accept data and a "valid" signal to indicate when data is being transmitted. 
There are also  and  signals that indicate the transfer destination and source, tx_dest[3:0] rx_src[3:0]
respectively. The location ID is a static number along the row or column. For example, on a row, the NAP 
number starts at 1 with the westernmost NAP and increments to 10 with the easternmost NAP. Similarly, on a 
column the NAP number starts at 1 with the southernmost NAP and increments to 8 with the northernmost NAP.
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Data streaming provides a simple method to push data across a single row or column without using FPGA 
routing resources. Each NAP endpoint can both send and receive data, although each individual transfer is one 
way. The receiving NAP does not send an acknowledgement of receiving the data. Additionally, any number of 
NAPs on the same row or column can send data streaming transactions between each other; however, 
transactions are only point to point. There is no broadcast option built into the 2D NoC. If it is necessary to 
broadcast data down a row or column, the design must take this into account and send the transaction along to 
the next NAP.

The following figure shows transactions between various points in the 2D NoC. The logic at points 1 and 2 have 
each instantiated a horizontal NAP. The NAPs can both send and receive data, as indicated by the arrows in the 
figure, but each individual data stream transaction is unidirectional. For example, the NAP at location 1 can send 
a data stream transaction to the NAP at location 2, and the NAP at location 2 can send a separate data stream 
transaction to the NAP at location 1. Similarly, the logic at points 3 and 4 both instantiate a vertical NAP and can 
send data streams between each other.

Figure 19: Data Streaming
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Any clock domain crossing logic is automatically handled in the 2D NoC. The 2D NoC also handles transaction 
arbitration internally and can interleave the data streaming with AXI transactions. Keep in mind the full design 
when using multiple NAPs on a row or column such that traffic congestion is considered. Since data streaming 
requires a single column or row for the NAPs communicating with each other, it is necessary to be aware of 
traffic to AXI NAPs on the same row or column. AXI transactions and data streaming can be interleaved and add 
to latency.
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Chapter - 6: Speedster7t 2D NoC Address Mapping

Global Address Map
The 2D NoC has a global address map used to address all of the endpoints in the FPGA. The address map uses 
a 42-bit address space and includes regions that can be remapped with an address translation table for each 
NAP. Refer to the section on . The following figure shows the 2D NoC Address Translation (see page 40)
address space and how each portion of the 42-bit address space is distributed.

Figure 20: 2D NoC Address Space



Speedster7t 2D Network on Chip User Guide (UG089)

Preliminary Data 37

Each of the endpoints on the 2D NoC has its own address space. The following global address space table 
describes the details of each of the endpoints available on the 2D NoC.

Table 3: 2D NoC Global Address Map

Address Bit 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 … 0

Destination

PCIe 1 ID Memory Address

DDR4 0 1 Memory Address

GDDR6 0 0 0 0 0 Ctrl ID Memory Address

NAP 0 0 0 1 0 0 0 NAP Column NAP Row Memory Address

CSR Space 0 0 1 0 0 0 0 0 Target ID IP ID Memory Address

FCU 0 0 1 1 0 0 0 0 0 0 0 0 FCU Address

The 2D NoC uses the most significant bits of the address to identify the destination space of a transaction. A 
description of each address space follows.

PCIe
Addr[41] = 1'b1

Addr[40] =  – Selects between the two PCIe IP cores:ID
1'b0 – PCIE_1 IP, PCIex16 port

1'b1 – PCIE_0 IP, PCIex8 port

Addr[39:0] =  – Address passed to the PCIe coreMemory Address

DDR4
Addr[41:40] = 2'b01

Addr[39:0] =  – Address passed directly to the DDR4 controllerMemory Address

GDDR6
Addr[41:37] = 5'b00000

Addr[36:33] =  – Selects which of the sixteen GDDR6 channels the transaction is destined for:Ctrl ID
Addr[36:34] – Selects the controller

Addr[33] – Selects between the two channels on each controller

Addr[32:0] =  – The memory address for the specific controller and channelMemory Address
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GDDR6 Ctrl ID Mappings
The mappings from  to individual GDDR6 memory controllers address space vary according to the Ctrl ID
particular device. As an example, the mappings for the Speedster7t AC7t1500 FPGA are shown in the 
following table.
Table 4: Speedster7t AC7t1500 FPGA GDDR Memory Mapping

Ctrl ID Controller Channel

36 35 34 33

0 0 0 0 GDDR6 2 0

0 0 0 1 GDDR6 2 1

0 0 1 0 GDDR6 6 1

0 0 1 1 GDDR6 6 0

0 1 0 0 GDDR6 1 0

0 1 0 1 GDDR6 1 1

0 1 1 0 GDDR6 5 1

0 1 1 1 GDDR6 5 0

1 0 0 0 GDDR6 3 0

1 0 0 1 GDDR6 3 1

1 0 1 0 GDDR6 7 1

1 0 1 1 GDDR6 7 0

1 1 0 0 GDDR6 0 0

1 1 0 1 GDDR6 0 1

1 1 1 0 GDDR6 4 1

1 1 1 1 GDDR6 4 0

Note

The address mappings apply only to the memory address space. For configuration space 
(CSR) address mappings, please see the appropriate CSR mapping table.

The channel selection (LSB of ) is reversed for channels on the east side of the Ctrl ID
device. This is shown in the table, above.

NAP
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NAP
Addr[41:35] =  Accesses any NAP endpoint in the device.7'b0001000 –

Addr[34:31] =  Valid values for this field are 0 to 9, west to east. Columns on the 2D NoC NAP Column–
are numbered 1 to 10, west to east. In order to save bits in the address, the number for a column "N" 
becomes "N-1" for this value (column 3 uses the value of 2).

Addr[30:28] =  Valid values for this field are 0 to 7, south to north. Rows on the 2D NoC are NAP Row–
numbered 1 to 8, south to north. In order to save bits in the address, the number for a row "N" becomes 
"N-1" for this value (row 5 uses the value of 4).

Addr[27:0] =   Passed to the FPGA fabric logic.Memory Address –

Note

The row and column fields in the address for AXI transactions start numbering from 0, whereas 
placement constraints in ACE use the actual row and column numbers, starting from 1.

CSR Space
Addr[41:34] =  – Accesses all of the control and status registers in the FPGA.8'b00100000

Addr[33:28] =  – Selects the space (PCIe, DDR4, GDDR6, etc.) where the control and status Target ID
register(s) reside.

Addr[27:24] =  – Indicates a specific target space internal to the IP. This ID is unique for each IP and IP ID
is described in the associated user guide.

Addr[23:0] =  – Byte address for the specific space in the IP.Memory Address
See the table, .Control and Status Register Map (see page 40)

FCU
Addr[41:30] = 12'b001100000000

Addr[29:0] =  - This address is passed directly to the FCU block.FCU Address

Control and Status Register Space
The control and status register (CSR) space can receive read or write transactions from an initiator on the 2D 
NoC, which initiates an AXI transaction to the particular address of a register in the CSR space, allowing the 
initiator to write to a control register or read a status register in one of the GDDR6 controllers or DDR4 controller, 
for example. The CSR space uses a 34-bit address, with the most significant bits indicating the target IP space. 
The target IP spaces address map follows.

For more information on each individual register space, consult the associated user guide.
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Table 5: Control and Status Register Map

Target ID Description

CSR Space 33 32 31 30 29 28

GDDR6_0 0 0 0 0 0 0 GDDR6 0 control and status registers.

GDDR6_1 0 0 0 0 0 1 GDDR6 1 control and status registers.

GDDR6_2 0 0 0 0 1 0 GDDR6 2 control and status registers.

GDDR6_3 0 0 0 0 1 1 GDDR6 3 control and status registers.

DDR4 0 0 1 0 0 1 DDR4 control and status register space.

GPIO south 0 0 1 0 1 1 General-purpose I/O on south side.

Temp Sensor 0 0 1 1 0 0 Temperature sensor.

GDDR6_4 0 1 0 0 0 0 GDDR6 4 control and status registers.

GDDR6_5 0 1 0 0 0 1 GDDR6 5 control and status registers.

GDDR6_6 0 1 0 0 1 0 GDDR6 6 control and status registers.

GDDR6_7 0 1 0 0 1 1 GDDR6 7 control and status registers.

PCIe x16 0 1 1 0 0 1 PCIe ×16 control and status registers.

PCIe x8 0 1 1 0 1 0 PCIe ×8 control and status registers.

Ethernet 0 0 1 1 0 1 1 Ethernet 0 control and status registers.

Ethernet 1 0 1 1 1 0 0 Ethernet 1 control and status registers.

GPIO north 0 1 1 1 0 1 General-purpose I/O on north side.

Address Translation
Each NoC access point (NAP) has its own private address translation table that is configured through the 
bitstream. The address translation table allows the NAP to remap various endpoints. For example, the NAP can 
remap the address of each GDDR6 controller, along with pages within each controller memory space. Similarly, 
each NAP can remap pages within the DDR4 memory space, and can even remap other NAP endpoints.

Address translation can be useful for a number of reasons. For example, if it is desired to have several engines 
accessing GDDR6 and to reuse the same RTL for each engine, this can be easily accomplished. A module can 
be written to access GDDR6 0, but then the translation tables can be configured to point to the particular GDDR6 
that is closest to each instance of the engine.
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Caution

Configuration of the address translation table in the NAP is not currently available in the ACE tool suite.

Additionally, access to certain endpoints can be prevented, for example, to add security such that two engines 
can be prevented from accessing the same memory. The I/O Designer Toolkit 2D NoC configuration GUI in ACE 
provides a simple way to disable access per 2D NoC row to various endpoints such as GDDR6, DDR4, PCIe 0, 
PCIe 1, FCU, CSR space, and the NAPs.

The following tables list the bits available for address translation within the specific address spaces. Bits that are 
available for address translation are highlighted in yellow.

DDR4
Bits[32:26] of the DDR4 memory address can be used in address translation allowing pages in the 
memory to be remapped.
Table 6: DDR4 Address Translation

Address Bit 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 … 0

DDR4 0 1 Memory Address

GDDR6
Addr[36:33] =  – All bits can be used in address translation allowing remapping to determine which Ctrl ID
GDDR6 controller receives a transaction.

Bits[28:26] – Can be used in address translation allowing pages in the memory to be remapped.
Table 7: GDDR6 Address Translation

Address Bit 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 … 0

GDDR6 0 0 0 0 0 Ctrl ID Mem Address

NAP
Bits[34:31] =  – Can be used in address translation.NAP Column
Bits[30:28] =  – Can be used in address translation.NAP Row
Both fields can be used in address translation allowing the location of the NAP transaction to be 
remapped.
Table 8: NAP Address Translation

Address Bit 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 … 0

NAP 0 0 0 1 0 0 0 NAP Column NAP Row Memory Address
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Chapter - 7: Speedster7t 2D NoC Performance
The 2D NoC is optimized for high bandwidth and supports a cross-sectional bidirectional bandwidth of 20 Tbps. 
The 2D NoC provides a 256-bit wide primary datapath that runs at 2 GHz, thus delivering 512 Gbps of 
bidirectional bandwidth in all directions. Because it includes clock-crossing logic internally, the main buses of the 
2D NoC can run at high speeds, while the FPGA fabric and IP interfaces can run at lower frequencies as needed.

Latency and Performance
Latency
In order to increase user design flexibility, the 2D NoC includes clock domain crossing logic to transmit data from 
the logic operating at the FPGA fabric speed to the 2 GHz data path of the 2D NoC. Each NAP has a small 
asynchronous FIFO adding a few fabric clock cycles in each direction, which adds a small amount of latency to 
transactions. Additionally, there is some latency added to traverse a 2D NoC row or column. In the east-west 
direction there is latency of 2 × 2 GHz, or 1 ns per NAP along the row. In the north-south direction, there is 
latency of 7 × 2 GHz, or 3.5 ns per NAP along the column.

Note

The 2D NoC may be operated at frequencies other than the default of 2GHz. In these instances, the 
latency values increase according to the clock period of the selected 2D NoC frequency. See the 
section, .Power (see page 45)

AXI Burst Transactions
One method to increase performance is to make use of burst transactions. For a single AXI transaction, 
Speedster7t AC7t1500/1550 FPGAs support a maximum burst length of up to 16 beats, equivalent to 4Kb or 
512B of data. While this is smaller than the full 256 beats supported by the AXI standard, this does provide for 
more efficient use of each AXI transaction, thus increasing performance when AXI bursts are used.

There are two exceptions to the limit above:

When reading from external memory, DDR4 or GDDR6, it is possible to request a burst greater than 16 
beats. However, the east/west buffers in an AXI Responder NAP have 16 entries. These are written at the 
2D NoC frequency, (up to 2.027GHz), however they are read out at the lower user design frequency. This 
causes the NAP to back-pressure the 2D NoC row, causing any other traffic on that row to be stalled. 
Therefore, read bursts of greater than 16 beats should only be considered for a NAP that is on its own 
row, with no other NAPs present on the same row. For bursts of 16 beats or less, the NAP FIFO can 
absorb all the traffic at full speed with no back pressure to the rest of the 2D NoC row.

It is possible for an interface subsystem which initiates traffic, such as the PCIe core, to generate bursts 
greater than 16 beats. Therefore, a user design should ensure that any data buffering from such a source 
should be able to support longer burst sizes. Particularly for data from the PCIe core as that is sent from 
north to south, and the shallow NAP north to south buffers (see below), can only buffer 4 entries.
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Note

For writing to external memory, using the AXI Responder NAP, the limit is 16-beats. This is 
supported by the DSM simulation which indicates an error if a burst of greater than 16 beats is 
attempted.

For detailed information on the AXI initiator and responder NAPs, please refer to the appropriate 
chapters in the .  (UG103)Speedster7t Soft IP User Guide

NAP Buffering
Each NAP contains two asynchronous FIFO buffers, one in each 2D NoC direction. These support the buffering 
of data as it is transferred between the user design clock domain, and the 2D NoC clock domain. For horizontal 
and AXI responder NAPs, the east to west and west to east buffers are 16 entries deep. For vertical, AXI initiator 
and Ethernet NAPs, the south to north buffers are 16 entries deep, however the north to south buffers are only 4 
entries deep.

As the ratio of the user design and 2D NoC clock domains can span a wide variance, it is possible that for certain 
combinations of the two clocks, traffic throughput can be impacted, particularly by the shallow north to south 
buffers, as clock domain crossing of the data is performed.

Note

The buffers in each NAP are designed to absorb traffic from the 2D NoC, and to support CDC crossing 
from the 2D NoC clock and the user design clock. They should not be used, by design, to store 
incoming transactions or data. In this scenario, it is possible for the buffers to fill, and then back-
pressure their respective row or column.
User designs should ensure that they are able to service any read or write request from a NAP in a 
timely manner. For example, a PCIe DMA transaction may issue multiple read requests. The user 
design NAP receiving these read requests should accept them from the NAP as they arrive, even if the 
user logic is not yet able to service the read request. The read requests can then be processed by the 
user logic and responses returned in due course.

Outstanding Transactions Table
Each NAP contains an outstanding transactions table (OTT) which is used to ensure in-order responses. 
According to the AXI specification, if two transactions are issued with the same transaction ID, the responses 
must be returned in the same order. If two transactions with the same ID are issued to the same direction (east 
or west), downstream logic ensures that they are returned in order. But if the transactions are issued in different 
directions, the responses might be returned out of order. The outstanding transaction table prevents this scenario 
by allowing transactions to be issued in one direction only if there are no outstanding transactions in the other 
direction. To accomplish this, a counter is maintained of the number of outstanding transactions for every 
transaction ID. The counter has a maximum value of 16, meaning that no more than 16 transactions can be 
outstanding for each transaction ID.

Since this can cause a performance issue, the OTT can be disabled, allowing more transactions to be 
outstanding at any given time, but also allowing out-of-order responses for transactions in different directions. If a 
NAP is only ever sending transactions in one direction, or is using different IDs for each transaction, then there is 
no risk to disabling the OTT. While this can give greater throughput, this parameter should not be disabled unless 
the NAP is only sending in a single direction, or is using unique IDs, by design.

Flits and AXI Protocol

https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103
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1.  

2.  

3.  

4.  

5.  

Flits and AXI Protocol
All transactions on the 2D NoC are carried as small data packets called flits. These are carried serially over the 
2D NoC, traversing rows, columns and exiting to the peripheral 2D NoC surrounding the core programmable 
fabric.

The AXI protocol defines five asynchronous channels:

Write request

Write data

Write response

Read request

Read data

According to the AXI specification, these channels should be considered independent, and can issue requests 
and responses independently of each other.

When using an AXI NAP, these channels are presented as the five independent channels. However, within the 
NAP, each channel transaction is converted to or from flits, which are sent serially and in order through the 2D 
NoC. This creates a dependency between the AXI channels. In the case that an AXI NAP blocks one of the AXI 
channels by not responding, this blocks the other channels as the flit awaiting a response is held, causing "head 
of line" blocking.

For example, if an AXI Responder NAP is both reading and writing, then having issued a write request, write data 
and read request, it should ensure that  and  are both asserted in order to accept the write rready bready
response and read data. If  is not asserted, and the write response is received first at the NAP, that flit is bready
held waiting . This blocks any other flits, such as the those with the read data. In this way it would appear bready
that the read never returned any data and, at the same time, the read data could be overflowing the NAP buffer 
on to the 2D NoC row, blocking any other NAPs. Equally, if  is not asserted, and the read data is rready
received first, it is held, and blocks the write response flit.

Note

User designs should ensure that AXI NAPs assert their respective "channel ready" signals 
whenever they issue a transaction (AXI Responder NAP) or are designed to accept transactions 
(AXI Initiator NAP).

For detailed information on the AXI initiator and responder NAPs, please refer to the appropriate 
chapters in the .  (UG103)Speedster7t Soft IP User Guide

AXI Responses
All AXI transactions must receive a response. If a read or write request is received at an AXI NAP, then it must 
issue a response. If the NAP does not respond, then, as described above, the respective flit is held and the NAP 
is blocked. Any future transactions to that NAP fail, possibly causing the whole system to fail. If the design cannot 
respond due to error, it should still respond, setting one of the error codes supported by  or .rresp bresp

https://www.achronix.com/documentation/speedster7t-soft-ip-user-guide-ug103
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1.  

2.  

Power
With the 2D NoC, there are different aspects of power consumption that should be understood. For each NoC 
access point (NAP) there are two portions that consume power:

The high-frequency portion connected to the row or column of the 2D NoC that operates at 2 GHz. This 
portion is always active while the 2D NoC is in use.

The lower-frequency portion of the NAP that operates at the fabric logic frequency of the user design. This 
portion is only used if the NAP is instantiated in the design. In this case, the NAP portion operating at the 
fabric logic frequency does not contribute to dynamic power if it is unused.

The 2D NoC along with the NAPs  be powered down, but it can be configured to run with a lower cannot
frequency, which results in a lower power consumption. A lower frequency clock can be configured down to 200 
MHz. In this case, the 2D NoC is still functional, but operates at the selected lower frequency rather than the 
default of 2 GHz. When set to the minimum frequency of 200MHz, the 2D NoC consumes the lowest power 
possible, however at these low frequencies it is not recommended to drive high bandwidth transactions through 
the 2D NoC to any interface subsystems.
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1.  

2.  

3.  

Chapter - 8: Speedster7t 2D NoC Simulation Support
With the introduction of a two-dimensional network on chip (2D NoC) interacting with logic in the FPGA fabric, it 
is important to have methods for simulating the user design to understand how the design interacts with the 2D 
NoC. Achronix provides three levels of simulation models to support different phases in the design process:

A bus functional model (BFM) of the NAP for simple functional simulations.

A cycle-accurate model of the full rows, columns and peripheral ring of the 2D NoC to simulate latency 
and congestion between NAPs, with BFMs of the interface subsystems.

Ability to extended the cycle-accurate model of the 2D NoC with cycle-accurate RTL models of individual 
interface subsystems.

NAP Bus Functional Model
The first phase of simulation with a design is to functionally communicate with a NoC access point (NAP) in the 
fabric. The Achronix library includes simple BFMs in each instance of a NAP macro. Each NAP includes simple 
tasks which can be called to simulate sending or receiving a transaction. The tasks depend on the type of NAP 
macro used and the direction of the transaction. The testbench calls these tasks in the BFMs by using bind 
statements.

The following example shows how to bind to the BFM tasks in a NAP and use a testbench to respond to requests 
from the FPGA fabric logic initiating transactions. These examples are only snippets of code. For a more detailed 
example of how to use the NAP BFMs in a simulation, refer to the  Speedster7t DDR4 Reference Design Guide

, in STANDALONE simulation mode.(RD018)

NAP Task BFM Binding Example

// Testbench has to connect to NAP responder via tasks

// When binding, the module is inside the target module, so gets
// parameters and signal names from that module - not this module
 

 bind dut.i_axi_responder_nap_wrapper.x_NAP_AXI_SLAVE
 tb_noc
   inst_noc (

        // Inputs
        .i_clk                  (clk), // bound to signal in AXI_NAP_SLAVE
        .i_reset_n              (rstn) // bound to signal in AXI_NAP_SLAVE
    );
 

  // DUT
  my_design_with_nap

    dut (
        // Inputs

        .i_clk                  (clk),
        .i_reset_n              (reset_n)

    );
 

//----------------------------
 

// The DUT that instantiates the NAP
 

 module my_design_with_nap (

https://support.achronix.com/hc/en-us/articles/4405039082132-How-Do-I-Gain-Access-to-Confidential-Documents-
https://support.achronix.com/hc/en-us/articles/4405039082132-How-Do-I-Gain-Access-to-Confidential-Documents-
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  input i_clk,

  input i_reset_n
);
 

ACX_NAP_AXI_SLAVE i_axi_responder_nap_wrapper (
        .clk             (i_clk),

        .rstn            (i_reset_n),
 

//----------------------------
 

// The ACX_NAP_AXI_SLAVE instantiates the NAP_AXI_SLAVE which has the BFM tasks

NAP_AXI_SLAVE x_NAP_AXI_SLAVE (
        .clk            (i_clk),

        .rstn           (i_reset_n),
 
 

//----------------------------
 

// the testbench that is bound to the NAP calls the tasks
 

module tb_noc

(
    // Inputs

    input  wire             i_clk,
    input  wire             i_reset_n    // Negative synchronous reset

);
 

    // Support read requests by calling tasks in NAP

    initial
    begin

        #1000       // Allow NAP simulations models to reset first
        while(1)

        begin
            // Blocking call.  Task will only complete when request made

            get_AR(t_arid, t_araddr, t_arlen, t_arsize, t_arburst, t_arlock, t_arqos);
            begin

                // Read request logged
                for( i=t_arlen; i>0; i=i-1 )

                begin
                    issue_R(t_arid,mem_array_out,2'b00,1'b0);
                    t_araddr = t_araddr + 42'h01;
                    @(posedge i_clk);

                end
                issue_R(t_arid,mem_array_out,2'b00,1'b1);

                @(posedge i_clk);
            end

            @(posedge i_clk);
        end

    end 

ACX_NAP_AXI_SLAVE Responder Macro
Initiator logic in the FPGA fabric communicates with a NAP AXI responder macro. In this case, the transactions 
initiate in the FPGA user logic and the NAP responds. The user testbench can call the tasks in the BFM by using 
bind statements. The following tasks are available to functionally model AXI transactions to initiator logic in the 
FPGA fabric.
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Table 9: NAP AXI Responder Tasks

Task Name Description

get_AR Waits for a valid read request and returns the relevant AXI fields to accept the transaction.

get_AW Waits for a valid write request and returns the relevant AXI fields to accept the transaction.

get_W Waits for valid write data and returns relevant AXI fields to accept the data.

issue_R Issues valid read data and waits until the read data is accepted.

issue_B Issues valid write response/acknowledge and waits until the response is accepted.

ACX_NAP_AXI_MASTER Initiator Macro
Responder logic in the FPGA fabric communicates with a NAP AXI initiator macro. In this case, the transactions 
initiate from the NAP, and the FPGA user logic responds. The user testbench can call these tasks in the BFM by 
using bind statements. The following tasks are available to functionally model AXI transactions to responder logic 
in the FPGA fabric.

Table 10: NAP AXI Initiator Tasks

Task Name Description

issue_AR Issue a valid read request and wait until the request is accepted.

issue_AW Issue a valid write request and wait until the write request is accepted.

issue_W Send valid write data and wait until the write data is accepted.

get_R Receive read data when valid read data is available.

get_B Receive write response/acknowledge when valid.

ACX_NAP_HORIZONTAL Macro
If user logic sends or receives raw data streams (or flit transfers) along a single row, there must be two horizontal 
NAP macros which communicate with each other. Each horizontal NAP implements a simple BFM to model the 
functionality of the data transfer. The user testbench can call the tasks in the BFM by using bind statements. The 
following tasks are available to functionally model the flit transfers.

Table 11: NAP Horizontal Tasks

Task Name Description

issue_rx Issue a flit transfer and wait for it to be accepted.

get_tx Receive a flit transfer request, assert ready when ready and wait for a "valid" signal.
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Note

Transactions between  instances can only be simulated when using the full ACX_NAP_HORIZONTAL
cycle-accurate model of the 2D NoC, as it requires traffic to pass between multiple NAPs.

ACX_NAP_VERTICAL Macro
If user logic sends or receives raw data streams (or flit transfers) along a single column, there must be two 
vertical NAP macros that communicate with each other. Each vertical NAP implements a simple BFM to model 
the functionality of the data transfer. The user testbench can call the tasks in the BFM by using bind statements. 
The following tasks are available to functionally model the flit transfers.

Table 12: NAP Vertical Tasks

Task Name Description

issue_rx Issue a flit transfer and wait for it to be accepted.

get_tx Receive a flit transfer request, assert ready when ready and wait for a "valid" signal.

Note

Transactions between  instances can only be simulated when using the full cycle-ACX_NAP_VERTICAL
accurate model of the 2D NoC, as it requires traffic to pass between multiple NAPs.

ACX_NAP_ETHERNET Macro
If user logic sends or receives Ethernet streams along a column, an Ethernet NAP macro must be used to 
communicate with the Ethernet subsystem. Each Ethernet NAP implements a simple BFM to model the 
functionality of the data transfer. The user testbench can call the tasks in the BFM by using bind statements. The 
following tasks are available to functionally model the transfers.

Table 13: NAP Ethernet Tasks

Task Name Description

issue_rx Issue a transfer and wait for it to be accepted.

get_tx Receive a transfer request, assert ready when ready and wait for a "valid" signal.

Note

Transactions using  can only be simulated when using the full cycle-accurate ACX_NAP_ETHERNET
model of the 2D NoC, as it requires traffic to pass between the  and the Ethernet ACX_NAP_ETHERNET
interface subsystem.
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Simulating 2D NoC with DSM
ACE includes a full chip simulation model of each of the Speedster7t FPGAs, known as the Device Simulation 
Model (DSM). The DSM provides a full cycle-accurate model of the 2D NoC along with BFMs of the interface 
subsystems. The combination of the BFMs for the interface subsystems and the cycle-accurate 2D NoC creates 
a balance between faster compile and simulation times, while also accurately modeling latency and traffic 
congestion on the 2D NoC. If multiple NAPs are used in a design, simulating at this level is a critical step to 
understanding if there are bottlenecks in the 2D NoC usage and allows determining if the efficiency can improve 
by placing the NAPs on different rows or columns.

When using the DSM, the Achronix-defined text macro is then used to attach the NAP in the user design to the 
specific NAP location in the 2D NoC hierarchy. An example follows of how to instantiate the Speedster7t 
AC7t1500 FPGA, and to connect four types of NAPs in a design to specific NAP locations in the device.

Full 2D NoC Simulation Binding NAPs

   //Instantiate Speedster7t1500

   ac7t1500 ac7t1500( );
 

   // horizontal NAP at col=1, row=3 

   `ACX_BIND_NAP_HORIZONTAL(DUT.i_nap_row_3.i_nap_horizontal,1,3);
 

   // vertical NAP at col=3, row=1 

   `ACX_BIND_NAP_VERTICAL(DUT.i_nap_col_3.i_nap_vertical,3,1);
 

   // AXI responder NAP at col=1, row=1 (south-west corner)
   `ACX_BIND_NAP_AXI_SLAVE(DUT.i_axi_responder_wrapper_in.i_axi_responder,1,1);
 

   // AXI initiator NAP at col=9, row=8 (north-east corner)

   `ACX_BIND_NAP_AXI_MASTER(DUT.i_axi_bram_rsp.i_axi_initiator_nap.i_axi_initiator,9,8);

For an example of using the DSM, refer to the . This   (RD022)Speedster7t 2D NoC Reference Design Guide
reference design provides example source code for instantiating and using NAPs, and includes a full testbench 
along with constraint and project files for implementation.

Cycle-Accurate Simulations of Interface Subsystems
A final step for simulation is to use the DSM, while switching the target interface subsystems from a BFM to an 
RTL model. This step allows accurately modeling traffic in the 2D NoC and to/from any interface subsystems 
such as PCIe, GDDR6, DDR4, or Ethernet. It provides a cycle-accurate method to model delays, latency, and 
traffic congestion in the entire system. However, this accuracy comes at the cost of increased compile and 
simulation time. As each interface subsystem can be run in full RTL or BFM mode, it is possible, for example, to 
simulate the DDR4 interface subsystem as an RTL model, while choosing to run the remaining interface 
subsystems in BFM mode.

Caution

Refer to the specific interface subsystem user guide for details on running the particular subsystem 
using full RTL simulation.

https://support.achronix.com/hc/en-us/articles/4405039082132-How-Do-I-Gain-Access-to-Confidential-Documents-
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1.  

2.  

3.  

Chapter - 9: Speedster7t 2D NoC Software Support
The I/O Designer Toolkit allows configuring the interface subsystems, clocks, PLLs, GPIO, and the 2D NoC. This 
section details the steps needed to configure the 2D NoC.

Create Clocks and Configure the PLL
The first step in configuring the 2D NoC is to provide a global clock running at 200 MHz:

Connect a clock input using the clock I/O bank configuration in the I/O Designer Toolkit.

Figure 21: Clock I/O Bank Configuration

Create a PLL using the PLL configuration GUI.

Configure the PLL so that it uses the new input clock as a reference input, and set the output frequency to 
200 MHz. The output clock of the PLL can be renamed , for example, to make it easier to noc_clk
identify.
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4.  

5.  

1.  

If the clock for the 2D NoC is not used in the FPGA fabric, uncheck  Expose Clock Output to Core Fabric
so that it does not consume a clock resource in the FPGA fabric.

Figure 22: PLL Configuration

When this clock is configured to the desired specifications, configure the 2D NoC itself.

Configure the 2D NoC
Top-Level Configuration

Using the I/O Designer Toolkit, create a new 2D NoC IP configuration. This operation only needs to be 
performed once as there is only one 2D NoC in a Speedster7t FPGA.
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2.  

3.  

4.  

5.  

6.  

1.  

As can be seen in the following figure, the target device is selected from a pull-down menu.

Figure 23: 2D NoC Configuration of Clock

The frequency profile for the 2D NoC is also selected from the pull-down menu of several frequency 
options, or a  option can be selected.Custom
If the  option is chosen, frequencies can be set on the next configuration page.Custom
The reference clock name is selected from a pull-down list of valid clocks available in the design. In this 
case, it must be a 200 MHz clock.

Click  to continue to the next configuration page.Next

Individual Sections Clocking
This page in the IP Configuration GUI allows setting different frequencies for the different sections of the 2D NoC 
if the  option was chosen on the previous page.Custom
If it is necessary to reduce power, and it is known that a portion of the 2D NoC is not used in the design, the 
frequency of certain segments of the 2D NoC may be reduced. In this case, the frequency of the six segments of 
the peripheral ring of the 2D NoC can be choosen, as well as the rows and columns, which is listed as Core 

. Possible frequency values range from 200 MHz up to 2.027 GHz. It is not possible to set the Fabric Frequency
frequency to 0 MHz to turn off power. The frequency of each segment should be chosen such that it is fast 
enough to support the required design throughput.

The desired frequency is entered in the box on the left, and the achieved frequency is displayed on the 
right.
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2.  

3.  

If a set frequency was chosen on the prior page, this page simply lists the achieved frequencies on each 
portion of the 2D NoC.

Figure 24: 2D NoC Frequency Configuration

Click  to continue to the next configuration page.Next

Access Controls
This page in the IP Configuration GUI allows enabling or disabling access to different endpoints per 2D NoC row. 
For the Speedster7t AC7t1500 FPGA, there are access controls for all eight rows. This is where access to the 
entire GDDR6, DDR4, FCU, CSR spaces, plus PCIe 0, PCIe 1, or the entire NAP space can be turned on or off 
for transactions traveling east or west along that row of the 2D NoC. In other words, for any NAP on that row, the 
NAP can only access the spaces that are checked for that row.
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1.  

2.  

After all configurations for the I/O Designer Toolkit are complete, click  to create all of the Generate
necessary output files for the I/O ring portion of the Speedster7t FPGA.

Figure 25: 2D NoC Configuration Row Enable

Save the IP configuration as a  file and add it to the design project..acxip

Caution!

The NAPs located in the south half of the Speedster7t AC7t1500ES0 FPGA disable all transactions to 
the west by default.



Speedster7t 2D Network on Chip User Guide (UG089)

Preliminary Data 56

Chapter - 10: Revision History

Version Date Description

1.0 19 Sep 2019 Initial Achronix release.

1.1 03 Jun 2020

Additions:
Added details on the arbitration schemes in the peripheral ring of the NoC in 

.Speedster7t Peripheral 2D NoC Transaction Arbitration (see page 13)
Included extra details about supported burst lengths in Speedster7t 2D NoC 

.Rows and Columns AXI Mode (see page 17)
Added details on the arbitration schemes and information on how to 
configure arbitration weights in Speedster7t 2D NoC Rows and Columns 

.Transaction Arbitration (see page 18)
Included further details on transactions and NAP placement in Speedster7t 

.2D NoC Connectivity Interface-to-Fabric Connections (see page 27)
Added new details in Speedster7t 2D NoC Simulation Support Simulating 

.2D NoC with DSM (see page 50)

Updates and Corrections:
Minor updates and clarifications to Speedster7t 2D NoC Connectivity 

.Ethernet-to-Fabric Connections (see page 28)
Updates and clarification to Speedster7t 2D NoC Connectivity Data 

.Streaming (see page 33)
Corrected NAP numbering in Speedster7t 2D NoC Address Mapping (see 

.page 36)
Updated and corrected details in Speedster7t 2D NoC Performance (see 

.page 42)
Minor updates to .Speedster7t 2D NoC Software Support (see page 51)

1.2 13 Apr 2023

Add ACX_NAP_ETHERNET and updated all NAP figures in Speedster7t 2D 
.NoC Access Point (see page 20)

Correct obsolete terminology.
Added GDDR6 address map in Speedster7t 2D NoC Address Mapping (see 

.page 36)
Updates to , Speedster7t 2D NoC Connectivity (see page 26) Speedster7t 

, 2D NoC Performance (see page 42) Speedster7t 2D NoC Simulation 
, and Support (see page 46) Speedster7t 2D NoC Software Support (see 

.page 51)
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