Documentation

Download the latest versions of Achronix application notes, datasheets, product briefs, user guides and white papers.

Select the individual tabs below to browse through each type of documentation. Or use the filter to only see documentation related to your product of interest.

Some documents are restricted (denoted by the lock symbol in the download button) and require a support portal account to access the download. To download a restricted document, enter your support portal account credentials when prompted. Don't have a support portal account? Register for an account here: Achronix Support Account Registration

Title Description Version Released Date Document File
Using FPGAs to Accelerate Data Centers (WP005)

With the technology industry at a crossroads — the effective repeal of Moore's Law  — data centers have become the sweet spot of the technology sector, showing healthy revenue growth and attracting new system solutions in both hardware and software. Unlike the ethereal promise of upcoming wonders from AI, robotics and the IoT, data center growth and innovation is happening in the here and now, with an even brighter future ahead the moment other nascent markets emerge from their chrysalis with killer apps of their own.

1.0 Download
Embedded FPGA – a New System-Level Programming Paradigm (WP006)

The current public debate on the future of the semiconductor industry has turned to discussions about a growing selection of technologies that focuses instead on new system architectures and better use of available silicon through new concepts in circuit, device, and packaging design. The emergence of embedded FPGA is, in fact, not only essential at this juncture of the microelectronics history, but also inevitable. To understand this, a review of the history of FPGA technology is in order.

1.0 Download
EFPGA Acceleration in SoCs — Understanding the Speedcore IP Design Process (WP008)

The Speedcore design and integration methodology has been defined with intimate awareness of the difficulties ASIC engineering teams must contend with. All the necessary files and flows for capturing the functional, timing and power characteristics of a user-defined and programmed Speedcore instance, along with support for successfully reconfiguring an already field-deployed Speedcore IP embedded in an ASIC, are available to an ASIC development team either as products of the ACE design tools or as deliverables provided by Achronix. This methodology has already been proven in silicon and readily accommodates variations and preferences in company-specific ASIC development methodologies.

1.0 Download
Evaluating Speedcore IP For Your ASIC (WP007)

Phase zero is the beginning of a Speedcore design and how you begin matters. From a technical perspective, you will want to explore the possibilities to maximize the benefit of having your ASIC deployed with a Speedcore instance with a mix of resources well suited to your current and future programmed configurations. Achronix will help you along this road, providing support, training and feedback in employing tools, benchmarking designs and dealing with optimization issues.

1.0 Download
The Ideal Solution for AI Applications — Speedcore eFPGAs (WP011)

AI requires a careful balance of datapath performance, memory latency, and throughput that requires an approach based on pulling as much of the functionality as possible into an ASIC or SoC. But that single-chip device needs plasticity to be able to handle the changes in structure that are inevitable in machine-learning projects. Adding eFPGA technology provides the mixture of flexibility and support for custom logic that the market requires. Achronix provides not only the building blocks required for an AI-ready eFPGA solution, but also delivers a framework that supports design through to debug and test of the final application. Only Achronix Speedcore IP has the right mix of features for advanced AI that will support a new generation of real-time, self-learning systems.

1.0 Download
Enhancing eFPGA Functionality with Speedcore Custom Blocks (WP009)

Achronix Speedcore™ eFPGA IP can be integrated in an SoC for high-performance, compute-intensive and realtime processing applications such as AI, automotive sensor fusion, network acceleration and wireless 5G. Speedcore eFPGA IP is a game-changer for SoC developers, allowing them to add flexibility to their products by including FPGA technology in their ASICs. For SoC development, companies specify the quantity and mix of lookup-table (LUT) logic, embedded memory blocks, and DSP blocks that best meets their needs. Along with these functions, Achronix now offers the ability for companies to define custom block functions, optimized for their application, that can also be included in the eFPGA fabric. Speedcore custom blocks increase die area efficiency, increase performance and lower power.

1.0 Download
2018 Ushers in a Renewed Push to the Edge (WP012)

The past decade has seen massive growth in centralized computing, with data processing flowing to the cloud to take advantage of low-cost dedicated data centers. It was a trend that seemed at odds with the general trend in computing — a trend that started with the mainframe but moved progressively towards ambient intelligence and the internet of things (IoT). As we move into 2018, this centralization is reaching its limit. The volume of data that will be needed to drive the next wave of applications is beginning to force a change in direction.

1.0 Download
Mine Cryptocurrencies Sooner, Faster, and Cheaper with Achronix Speedcore Embedded FPGAs (WP014)

New cryptocurrencies such as Monero introduce ASIC-resistance and memory-hardness to prevent ASICs from being built that give some operators a competitive mining advantage over others who do not have access to the same technology. This white paper discusses the relevant background and presents a solution based on Achronix Speedcore™ embedded FPGAs (eFPGAs), enabling users to regain a highly profitable advantage over competing solutions.

1.0 Download
Title Description Version Released Date Document File
Speedcore eFPGA Datasheet (DS012)

Achronix Speedcore embedded FPGA (eFPGA) IP includes look-up-table, memory, and DSP blocks. Each of these blocks are designed to be modular to allow the definition any mix of resources required for a custom end system.

2.1 Download
Speedster7t FPGA Datasheet (DS015) The Achronix 7nm Speedster7t FPGA family is specifically designed to deliver extremely high performance for demanding applications including data-center workloads and networking infrastructure. The processing tasks associated with these high-performance applications, specifically those associated with artificial intelligence and machine learning (AI/ML) and high-speed networking, represent some of the most demanding processing workloads in the data center. 1.10 Download
Speedster7t 7t1500 Pin Table

The pin tables (in Excel format) for the Speedster7t AC7t1500 in the FBGA2597 package.

2.1 Download
Title Description Version Released Date Document File
Device Binning Methodologies (AN005)

The manufacturing process for any silicon device inevitably has variations, whether those are in the thickness of a substrate or track, the purity of a conductor, position of the die on the wafer, or one of a myriad of many other physical effects.

1.0 Device_Binning_Methodologies_AN005.pdf
Routing Reset Signals on Speedcore eFPGAs (AN007)

In FPGA design, reset signals can sometimes have a significant effect on the overall quality of timing or routing results. Generally it is recommended to reduce the number of logic elements that need to be reset by taking advantage of initial values and coding in such a way that reset is only needed on a few end points.

1.2 Routing_Reset_Signals_on_Speedcore_eFPGAs_AN007.pdf
Clock Design Planning for Speedcore eFPGAs (AN011)

Speedcore eFPGAs have a robust clocking architecture. While some designs only use a single main clock, others can have complicated clocking schemes. It is important for designers to understand the different types of clocks available in the Speedcore architecture, and how to get the best design out of the clocking resources available.

1.0 Clock_Design_Planning_for_Speedcore_eFPGAs_AN011.pdf
Measuring Accurate Toggle Rates

When calculating dynamic power for a design, one input to any power estimation is the toggle rate of the signals. In most circumstances, the value used will be one of the industry standards of either 12.5% or 25% — values derived from a wide range of designs.

1.0 Measuring_Accurate_Toggle_Rates_AN010.pdf
Formal Verification in the ACE Flow (AN013)

This application note covers the formal verification support available in the ACE environment. ACE currently is capable of supporting formal equivalency checking in its design flow, enabling the user to verify the synthesized netlist against the output at the different stages in the ACE flow.

1.0 Formal_Verification_in_the_ACE_Flow_AN013.pdf
Repeatability in ACE (AN012)

One of the desired requirements of any FPGA design tool is the ability to reproduce the exact same results every time the tool is run under the same conditions — a requirement refereed to as repeatability. The ACE placer and router are deterministic, delivering 100% repeatability.

1.2 Repeatability_in_ACE_AN012.pdf
Pipelining the CPU Interface (AN016)

A Speedcore instance hosted in an SoC supports three different configuration modes: CPU, serial flash and JTAG. In CPU mode, an external CPU acts as the master and controls the programming operations for the Speedcore eFPGA, and offers a high-speed method for loading configuration data.

1.0 Pipelining_the_CPU_Interface_AN016.pdf
ACE ECO Flow Guide (AN015)

This tutorial serves as an introduce to the ACE engineering change order (ECO) suite — a set of Tcl commands that can add or remove instances, nets, pin connections, and more from a placed-and-routed design.

1.0 ACE_ECO_Flow_Guide_AN015.pdf
Title Description Version Released Date Document File
Speedcore eFPGA Test Chip Evaluation Board (PB030)

The Speedcore eFPGA evaluation board from Achronix contains the 16-nm Speedcore eFPGA test chip. The evaluation board’s Speedcore test chip has been customized with the right blend of resources such as LUTs, BRAMs, DSP64s, DFFs and a number of I/O so as to provide an optimum programmable platform for demonstrating, evaluating and testing Achronix’s Speedcore technology.

1.0 Download
Maximize Hardware Assurance Using Embedded FPGAs (PB035)

Implementing a secure IP solution when developing a custom ASIC involves overcoming many risks along the development, manufacturing and supply chain flow. Hardware assurance continues to become more critical for military and defense applications as worldwide threats increase. By using an eFPGA IP solution to store mission critical IP, supply chain security is greatly simplified compared to the traditional ASIC design flow.

1.0 Download
Achronix Tool Suite (PB002)

The Achronix Tool Suite works in conjunction with industry-standard synthesis tools, allowing FPGA designers (for both standalone and embedded) to easily map their designs into Achronix FPGA technology. Achronix provides ACE together with an Achronix-optimized version of Synplify Pro from Synopsys, the industry standard for producing high-performance and cost-effective FPGA designs.

5.4 Download
Achronix Company Backgrounder (PB029)

Achronix Semiconductor Corporation is a privately held, fabless semiconductor corporation based in Santa Clara, California and offers high-performance FPGA solutions. Achronix’s history is one of pushing the boundaries in the high-performance FPGA market.

1.6 Download
VectorPath S7t-VG6 Accelerator Card

Developed jointly with BittWare, the VectorPath® S7t-VG6 accelerator card is designed to reduce time to market when developing high-performance compute and acceleration functions for artificial intelligence (AI), machine learning (ML), networking and data center applications.

2023.06.05 Download
Real-Time ASR Accelerator for Data Centers (PB036)

A real-time automatic speech recognition (ASR) accelerator for data centers, featuring industry-leading WER, concurrent real-time streams, and lowest latency — all running on a single VectorPath accelerator card.

1.1 Download
Accelerated Network Infrastructure Code Product Brief (PB037)

The Achronix Accelerated Networking Infrastructure Code (ANIC) is a modular suite of SmartNIC IP blocks optimized for Speedster®7t FPGAs and the VectorPath® Accelerator Card, offering high-performance networking for application acceleration.

1.0 Download
Speedcore eFPGA Product Brief (PB028)

Speedcore IP is embedded FPGA (eFPGA) that can be integrated into an ASIC or SoC. Customers specify their logic, RAM and DSP resource needs, then Achronix configures the Speedcore IP to meet their individual requirements.

2.0 Download
Title Description Version Released Date Document File
Speedster7t Machine Learning Processor User Guide (UG088)

The machine learning processor block (MLP) is an array of up to 32 multipliers, followed by an adder tree, an accumulator, and a rounding/saturation/normalize block.The MLP also includes two memory blocks, a BRAM72k and LRAM2k, that can be used individually or in conjunction with the array of multipliers. The number of multipliers available varies with the bit width of each operand and the total width of input data. When the MLP is used in conjunction with a BRAM72k, the amount of data inputs to the MLP block increases along with the number of multipliers available. 

0.9 Download
Speedster7t DDR User Guide (UG096)

The Achronix Speedster7t FPGA family provides DDR subsystems that enable the user to fully utilize the low latency and high-bandwidth efficiency of these interfaces for critical applications such as high-performance compute and machine learning systems. The DDR subsystem supports memory devices and features compliant with JEDEC Standard JESD79-4B.

1.0 Download
Speedcore Power Estimator User Guide (UG073)

The Achronix Speedcore Power Estimator tool provides a platform to calculate the power requirements for Achronix Speedcore eFPGAs. This user guide gives a detailed overview of the thermal and power needs depending on the device, environment and utilization of components in the design.

1.5 Download
Speedster7t Power Estimator User Guide (UG093)

The Achronix Speedster7t Power Estimator tool provides a platform to calculate the power requirements for the Achronix 7nm standalone FPGAs. This user guide gives a detailed overview of the thermal and power needs depending on the device, environment and utilization of components in the design.

1.1 Download
Speedster7t AC7t1500 Board Designers Guide (UG101) The Speedster7t AC7t1500 FPGA includes several advanced interfaces that require careful design in order to operate at their peak performance. This guide is intended as a general overview of PCB design principles that help the designer get the most out of the AC7t1500 FPGA. This guide is broken down by system components. These include the Ethernet, the PCIe5, the GDDR6 memory and the DDR4 memory interfaces. 1.0 Download
Speedster7t Component Library User Guide (UG086)

The Achronix Speedster7t component library provides the user with building blocks that may be instantiated into the user’s design. These components provide access to low-level fabric primitives, complex I/O blocks, and higher level design components. Each library element entry describes the operation of the component as well as any parameters that must be initialized. Verilog and VHDL templates are also provided to aide in the implementation of the user’s design.

2.0 Download
Speedster7t Power User Guide (UG087)

This document describes the different power supplies that are required for the Speedster7t 7t1500 device and voltage tolerance levels for each of them. Also included are the connection guidelines for each of the power rails and recommendations for the power supply network sharing schemes at the board level.

1.5 Download
Speedster7t Clock and Reset Architecture User Guide (UG083)

This document explains the architecture of the different clock networks in a Speedster7t FPGA and and provides information on how to use the clocks.

1.2 Download