Documentation

Download the latest versions of Achronix application notes, datasheets, product briefs, user guides and white papers.

Select the individual tabs below to browse through each type of documentation. Or use the filter to only see documentation related to your product of interest.

Some documents are restricted (denoted by the lock symbol in the download button) and require a support portal account to access the download. To download a restricted document, enter your support portal account credentials when prompted. Don't have a support portal account? Register for an account here: Achronix Support Account Registration

Title Description Version Released Date Document File
How to Design SmartNICs Using FPGAs to Increase Server Compute Capacity (WP017)

Intelligent server adapters, or SmartNICs, boost server performance in cloud and private data centers by offloading network processing workloads and tasks from server CPUs. Offloading network processing to a SmartNIC is not a new concept — for example, there are NICs that offload some network-processing functions such as checksum computation and segmentation. However, the rapid explosion in data-center network traffic driven by software-defined networking (SDN), Open vSwitch (OVS), and network functions virtualization (NFV) demands a new class of NIC with even greater offload capabilities: the SmartNIC.

1.0 Download
Mine Cryptocurrencies Sooner, Faster, and Cheaper with Achronix Speedcore Embedded FPGAs (WP014)

New cryptocurrencies such as Monero introduce ASIC-resistance and memory-hardness to prevent ASICs from being built that give some operators a competitive mining advantage over others who do not have access to the same technology. This white paper discusses the relevant background and presents a solution based on Achronix Speedcore™ embedded FPGAs (eFPGAs), enabling users to regain a highly profitable advantage over competing solutions.

1.0 Download
How to Meet Power Performance and Cost for Autonomous Vehicle Systems using Speedcore eFPGAs (WP015)

In the advanced, fully autonomous, self-driving vehicles of the future, the existence of dozens and even hundreds of distributed CPUs and numerous other processing elements is assured. Peripheral sensor-fusion and other processing tasks can be served by ASICs, SoCs, or traditional FPGAs. But the introduction of embedded FPGA blocks such as Achronix's Speedcore eFPGA IP provides numerous system-design advantages in terms of shorter latency, more security, greater bandwidth, and better reliability that are simply not possible when using CPUs, GPUs, or even standalone FPGAs.

1.0 Download
2018 Ushers in a Renewed Push to the Edge (WP012)

The past decade has seen massive growth in centralized computing, with data processing flowing to the cloud to take advantage of low-cost dedicated data centers. It was a trend that seemed at odds with the general trend in computing — a trend that started with the mainframe but moved progressively towards ambient intelligence and the internet of things (IoT). As we move into 2018, this centralization is reaching its limit. The volume of data that will be needed to drive the next wave of applications is beginning to force a change in direction.

1.0 Download
Enhancing eFPGA Functionality with Speedcore Custom Blocks (WP009)

Achronix Speedcore™ eFPGA IP can be integrated in an SoC for high-performance, compute-intensive and realtime processing applications such as AI, automotive sensor fusion, network acceleration and wireless 5G. Speedcore eFPGA IP is a game-changer for SoC developers, allowing them to add flexibility to their products by including FPGA technology in their ASICs. For SoC development, companies specify the quantity and mix of lookup-table (LUT) logic, embedded memory blocks, and DSP blocks that best meets their needs. Along with these functions, Achronix now offers the ability for companies to define custom block functions, optimized for their application, that can also be included in the eFPGA fabric. Speedcore custom blocks increase die area efficiency, increase performance and lower power.

1.0 Download
Title Description Version Released Date Document File
Clock Design Planning for Speedcore eFPGAs (AN011)

Speedcore eFPGAs have a robust clocking architecture. While some designs only use a single main clock, others can have complicated clocking schemes. It is important for designers to understand the different types of clocks available in the Speedcore architecture, and how to get the best design out of the clocking resources available.

1.0 Clock_Design_Planning_for_Speedcore_eFPGAs_AN011.pdf
Device Binning Methodologies (AN005)

The manufacturing process for any silicon device inevitably has variations, whether those are in the thickness of a substrate or track, the purity of a conductor, position of the die on the wafer, or one of a myriad of many other physical effects.

1.0 Device_Binning_Methodologies_AN005.pdf
Title Description Version Released Date Document File
Speedster7t 2D Network on Chip User Guide (UG089)

The Speedster7t FPGA family of devices has a network hierarchy that enables extremely high-speed dataflow between the FPGA core and the interfaces around the periphery, as well as between logic within the FPGA itself. This on-chip network hierarchy supports a cross-sectional bidirectional bandwidth of 20 Tbps. It supports a multitude of interface protocols including GDDR6, DDR4/5, 400G Ethernet, and PCI Express Gen5 data streams, while greatly simplifying access to memory and high-speed protocols. Achronix's two-dimensional network on chip (2D NoC) provides for read/write transactions throughout the device, as well as specialized support for 400G Ethernet streams in selected columns. The features of the 2D NoC described in this user guide generally pertain to the entire Speedster7t family of devices. In order to help users understand specific connections and features of the 2D NoC, this user guide focuses on the 2D NoC as implemented in the AC7t1500 device.

1.2 Download
Speedster7t Ethernet User Guide (UG097)

Speedster7t devices include high-speed Ethernet interfaces, which can support a wide variety of Ethernet packet protocols and speeds of up to 400 Gbps per channel. These Ethernet interfaces are paired with latest generation SerDes which individually support 100 Gbps data rates. With eight of these SerDes per Ethernet interface, each interface can support 2× 400 Gbps Ethernet IP channels.

2.1 Download
Speedster7t Clock and Reset Architecture User Guide (UG083)

This document explains the architecture of the different clock networks in a Speedster7t FPGA and and provides information on how to use the clocks.

1.2 Download
Speedster7t Power User Guide (UG087)

This document describes the different power supplies that are required for the Speedster7t 7t1500 device and voltage tolerance levels for each of them. Also included are the connection guidelines for each of the power rails and recommendations for the power supply network sharing schemes at the board level.

1.5 Download
Speedster7t Component Library User Guide (UG086)

The Achronix Speedster7t component library provides the user with building blocks that may be instantiated into the user’s design. These components provide access to low-level fabric primitives, complex I/O blocks, and higher level design components. Each library element entry describes the operation of the component as well as any parameters that must be initialized. Verilog and VHDL templates are also provided to aide in the implementation of the user’s design.

2.0 Download